Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42725    Accepted Submission(s): 21075

Problem Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!



Input

The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.



Output

Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".



Sample Input


Sample Output

The minimum amount of money in the piggy-bank is .
The minimum amount of money in the piggy-bank is .
This is impossible.

题目大意与分析

给出存钱罐空的时候的重量与装满的时候的重量,再给出几种货币的面值和重量,求装满的时候,面值最少是多少

很明显的完全背包,两个重量相减是背包容量,货币的面值是价值,货币重量是代价 唯一需要注意的是必须要正好装满,装不满的都要输出 "This is impossible."

代码

#include<bits/stdc++.h>

using namespace std;

long long int x,y,v,dp[],t,i,n,j;

int main()
{
cin>>t;
while(t--)
{
cin>>x>>y;
v=y-x;
for(i=;i<=v;i++)
dp[i]=;
cin>>n;
dp[]=;
for(i=;i<=n;i++)
{
cin>>x>>y;
for(j=y;j<=v;j++)
{
dp[j]=min(dp[j],dp[j-y]+x);
}
}
if(dp[v]!=)
cout<<"The minimum amount of money in the piggy-bank is "<<dp[v]<<"."<<endl;
else
cout<<"This is impossible."<<endl;
}
}

HDU 1114 Piggy-Bank(动态规划、完全背包)的更多相关文章

  1. HDU 1114(没有变形的完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 Piggy-Bank Time Limit: 2000/1000 MS (Java/Others ...

  2. HDU 1114:Piggy-Bank(完全背包)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  3. hdu 1114需要装满的完全背包 重点是背包初始化的问题

    .,. 最近在看背包九讲 所以就刷了一下背包的题目 这道题目是一个典型的完全背包问题 而且要求满包 在这里 我就简单整理一下背包初始化问题吧 对于没有要求满包的问题 也就是背包可以不取满的问题 在背包 ...

  4. HDU 2546.饭卡-动态规划0-1背包

    饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...

  5. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  6. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  7. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  8. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  9. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

随机推荐

  1. 对vue-router的研究--------------引用

    pushState/replaceState/popstate 解析 HTML5提供了对history栈中内容的操作.通过history.pushState/replaceState实现添加地址到hi ...

  2. shell练习--PAT试题1010:一元多项式求导 (25 分)(失败案例喜加一)

    ---恢复内容开始--- 1010 一元多项式求导 (25 分) 设计函数求一元多项式的导数.(注:x​n​​(n为整数)的一阶导数为nx​n−1​​.) 输入格式: 以指数递降方式输入多项式非零项系 ...

  3. pyhton函数

    函数编写文档 放在函数开头的字符串称为文档字符串(docstring),将作为函数的一部分存储起来 def square(x): 'Calculates the square of the numbe ...

  4. C# 匿名对象 增加属性

    dynamic data = new System.Dynamic.ExpandoObject(); IDictionary<string, object> dictionary = (I ...

  5. 我在做评论功能时学到的js一些思路

    在提交评论的时候,如何判断是一级评论还是二级评论(因为都是通过一个文本域提交评论),思路:声明一个全局变量,如果是回复(二级评论)那么会触发点击回复事件,在这个事件的回调函数里给全局变量设置为true ...

  6. 【LOJ2316】「NOIP2017」逛公园

    [题目链接] [点击打开链接] [题目概括] 对给定\(K\),起点\(1\)到终点\(n\)中对长度为\([L,L+K]\)的路径计数. \(L\)为\(1\)到\(n\)的最短路长度. [思路要点 ...

  7. 10.Python内置函数一览表

    为了提高程序员的开发效率,Python 提供了很多可以直接拿来用的函数(初学者可以先理解为方法),每个函数都可以帮助程序员实现某些具体的功能. 举个例子,在 Python 2.x 中 print 只是 ...

  8. Link Script 学习

    最后更新 2019-06-27 概述 当使用 C 或者 C++ 编写代码实现某种功能时,需要将源代码进行编译以及链接.链接是将一系列目标文件(.o)以及归档文件(.a)组合起来,重新定位各个文件数据并 ...

  9. 构建springboot的几种方式 在线构建 STS构建 Idea 内置构建 Maven 构建

    SpringBoot项目的几种创建方式,启动.和访问   最常用的4种方式,但除了这些以外,还有其他方式: ①在线创建 ②STS构建 ③Intell  Idea内置构建工具 ④Maven创建 STS官 ...

  10. vue2.0 父子组件之间的通信问题

    概要: 父组件向子组件通信:props属性 子组件向父组件通信:$emit()触发事件,$on()监听事件 在 vue 1.0 中可以使用$dispatch 和 $broadcast来实现 向上派发事 ...