Min-Max 容斥的证明
这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题...
上个结论:
\[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Max\{T\} \]
\[Max\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1}Min\{T\} \]
具体的证明其实很简单...我们考虑证明其中一个(以第一个为例),另一个可以用类似证法得到结论。咱直接考虑集合内元素不重的情况,因为相同大小我们强制规定他们之间存在大小关系就好了,并不影响结果
那么我们再把元素从小到大排个序,从前往后考虑每个值对答案的贡献...
首先第一个元素有贡献当且仅当集合里只有它一个元素,那么这样的集合只有一个,所以它的贡献有且仅有一次;
对于第二个元素,它除了自己一定要选以外,比他小的元素(这时只有第一个元素)全部可选可不选,总共有 \(2^{1}=2\) 种方案,并且集合大小为奇数和为偶数的情况各有一次,两者贡献抵消
对于后面的元素,可以用第二个元素类似的思路去想,最后我们发现除第一个元素以外的所有贡献都相互抵消了
当然咱也可以用二项式定理草率地证明一下,然后也能发现贡献相抵了,究其原因就是杨辉三角奇数列和偶数列之差为 0 ,而第一行为 1 是个特例 (因为只有一个元素)
于是乎得证...
例题:按位或
这题里面的期望满足使用 Min-Max 容斥的性质...
题解点 这里
Min-Max 容斥的证明的更多相关文章
- min-max 容斥
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
- [总结] Min-Max容斥学习笔记
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
- UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)
题面传送门 本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题. 然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥. M ...
- 从 0 开始的min_max容斥证明
二项式反演 \[f_n=\sum\limits_{i=0}^nC^i_ng_i \Leftrightarrow g_n=\sum\limits_{i=0}^n{(-1)}^{n-i}f_i \] 证明 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
- LOJ2542 随机游走 Min-Max容斥+树上期望DP
搞了一下午 真的是啥都不会 首先这道题要用到Min-Max容斥 得到的结论是 设 $Max(S)$表示集合里最晚被访问的节点被访问的期望步数 设 $Min(S)$表示集合里最早被访问的节点被访问的期望 ...
随机推荐
- UVa 213 信息解码 (模拟 && 二进制)
题意 :对于下面这个字符串 0,00,01,10,000,001,010,011……. 首先是长度为1的串,然后是长度为2的串,以此类推.不存在全为1的串. 你的任务是编写一个程序.首先输入一个代码头 ...
- 人脸三维建模A Morphable Model For The Synthesis Of 3D Faces(三维人脸合成的变形模型)
Abstract摘要 In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can ...
- 【canvas学习笔记三】样式和颜色
上一节我们学习了如何用路径绘制各种形状,但我们只能用默认的颜色和线条.这节就来学习设置不同的颜色和线条样式. 颜色 设置颜色主要有两个属性: fillStyle = color 设置填充颜色 stro ...
- HBuilder使用逍遥Android模拟器
Microvirt HBuilder使用逍遥Android模拟器 1.逍遥模拟器安装 地址: 点我下载 2.连接注意事项 a. 复制adb等文件 HBuilder安装目录中tools文件夹下的三个文件 ...
- SQL Server 2016升级迁移过程中性能问题诊断案例
日常运行的批量更新作业,平日是5分钟之内结束,今天出现超过30分钟没结束的情况,实际运行3个小时以上,应用程序超时报错. 数据库版本:SQL Server 2016企业版 问题SQL: declare ...
- NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码)
NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码) 七月,酷暑难耐,认识的几位同学参加知乎看山杯,均取得不错的排名.当时天池AI医疗大赛初赛结束,官方正在为复赛进行平台调 ...
- 点云网格化算法---MPA
MPA网格化算法思路 第一步:初始化一个种子三角面.(随机选点,基于该点进行临近搜索到第二点:在基于该线段中点临近搜索到第三点) 图1 第二步:在种子三角面的基础上,进行面片的扩充,利用边的中点进行临 ...
- 在SOUI3.0中使用数值动画
上一篇介绍了插值动画,插值动画是直接作用于窗口对象的. 数值动画则可以作用于任何对象. SOUI内置了3种数值类型的动画,分别是SIntAnimator, SFloatAnimator, SColor ...
- spotlight监控linux性能
linux性能监控有很多工具,spotlight只是其中一种 目录 1.安装spotlight 2.参数认识 1.安装spotlight spotlight不仅仅只是监控linux,还可以完成数据库以 ...
- 动画演示 Delphi 2007 IDE 功能[2] - 定义变量
https://my.oschina.net/hermer/blog/319152 动画剧本: 第一个变量: 输入: var; 然后执行 Ctrl+J ... 回车 第二个变量: 执行 Ctrl+J; ...