#415 Div2 Problem C Do you want a data? (math && 前后缀和 && 快速幂)
题意: 首先定义集合的F值为 这个集合里面最大值和最小值的差。 现给出一个拥有n个数的集合(没有相同的元素), 要求求出这个集合内所有子集的F的值的和。例如: {4、7}这个集合里面有子集{4}、{7}、{4, 7}, 则这些子集的F值分别为4-4=0、7-7=0、7-4=3, 所以最后的结果就是0+0+3 = 3!
以下分析引用至 : http://blog.csdn.net/dragon60066/article/details/72599167
分析: 不难想到要先使数组升序方便计算和思考, 然后观察发现如果选定任意一头一尾两个元素, 假如为ai、aj (ai<aj) 那这个两个元素之间围起来的区间可以看成ai....aj这样的数集, 且这集合里面所有子集贡献的F值都等于 aj - ai, 那这个区域包含了多少个这样的F值的集合呢?用笔简单列出表后不难发现规律, 这个和为个(需要用到快速幂), 至于具体为什么, 可以看自己多加思考一下且在参考博客有说明。当时想到这个后马上打出了枚举程序
#include<bits/stdc++.h>
#define LL long long
using namespace std;
;
LL arr[];
LL mi[];
LL qmod(LL a, LL b, LL c)
{
LL ans = ;
while(b){
) ans = (ans*a)%c;
a = (a*a)%c;
b >>= ;
}
return ans;
}
int main(void)
{
int n;
scanf("%d", &n);
; i<n; i++){
scanf("%lld", &arr[i]);
}
sort(arr, arr+n);
LL sum = ;
LL temp;
; i<n; i++){
mi[i] = qmod(, i, mod);
}
; i<n-; i++){
; j>i; j--){
LL sub = arr[j] - arr[i];
!=)temp = mi[j-i-];
;
temp%=mod;
sum += (((temp%mod)*(sub%mod))%mod)%mod;
sum%=mod;
}
}
printf("%lld\n", sum);
;
}
然后就可以顺利超时了, 因为像我这样做的复杂度是O(n^2)!需要优化!于是上网搜索看到了前缀和的解法, 甚是巧妙, 而且貌似榜上大佬大多也是这样做!
引用一下——>进一步思考,对于每个i, j,取值可能有
,第一种前面系数是(a[2]-a[1]+a[3]-a[2]+...+a[n]-a[n-1])=a[n]-a[1],同理可以发现第二种是a[n]+a[n-1]-a[1]-a[2]......,那么就推出来了:
那这个直观一点的话到底是在干什么玩意呢?看下面根据描述打出来的表

看到规律了吧!发现系数是对称的, 那我们根据系数的规律枚举从0到n-2的2次方就行了!不过细想的话, 虽然是找到了系数的规律, 但是好像还是不好实现, 参考别人的程序看到别人使用了前后缀和的做法, 巧妙的完成了依据上面规律进行的枚举操作, 具体的话不好说, 看一下程序便知!
以下为拙略表达, 可以跳过: 不过我还是说一下, 按我的理解就是从前面到中间的系数(以n=6为例, 枚举从2^0到2^2的系数)倒是不难枚举出来, 但是后面的就略微麻烦了, 解决方法——>定义前后缀和(例:sumf[i]是从1到i的前缀和, sumb[i]是n-1到i的后缀和), 那还是以n=6为例, 2^0到2^2的系数分别可以用sumb[6] - sum[1] 、 sumb[5]-sumf[2]、 sumb[4]-sumf[3]来解决, 后面的2^3 可以 sumb[3] - sumf[4], 停!有没有发现 计算这个差的过程中实际就是 a6+a5+a4+a4-a4-a3-a1-a2! a3和a4巧妙的被约去了, 2^4的计算也是同样道理!类似于回文?好思想!
#include<bits/stdc++.h>
#define LL long long
using namespace std;
;
;
LL arr[maxn], sumf[maxn], sumb[maxn], mi[maxn];
LL quick_mod(LL a, LL b, LL c)
{
LL ans = ;
while(b){
) ans = (ans*a)%c;
a = (a*a)%c;
b >>= ;
}
return ans;
}
int main(void)
{
int n;
scanf("%d", &n);
; i<=n; i++)
scanf("%d", &arr[i]);
sort(arr+, arr++n);///使序列单调
sumf[] = sumb[n+] = ;
mi[] = ;
; i<n-; i++)
mi[i] = quick_mod(, i, mod);///二的次方数组
; i<=n; i++)
sumf[i] = sumf[i-] + arr[i];///前缀和
; i--)
sumb[i] = sumb[i+] + arr[i];///后缀和
LL ans = ;
; i<n; i++){ //实际就是0 -- n-2 次循环
LL temp = (-sumf[i] + sumb[n-i+])%mod;
ans = (ans%mod + (temp * mi[i-])%mod)%mod;
}
printf("%lld\n", ans);
;
}
#415 Div2 Problem C Do you want a data? (math && 前后缀和 && 快速幂)的更多相关文章
- #415 Div2 C
#415 Div2 C 题意 给定一个数字集合,找到所有子集合最大值与最小值之差的和. 分析 列式子,找规律. $ (a_2 - a_1) * 2^0 + (a_3 - a_1) * 2^1 + .. ...
- HDU1757 A Simple Math Problem 矩阵快速幂
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- A Simple Math Problem(矩阵快速幂)(寒假闭关第一题,有点曲折啊)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3483 A Very Simple Problem Time Limit: 4000/2000 MS ( ...
- HDU 1757 A Simple Math Problem (矩阵快速幂)
题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- BestCoder Round #29——A--GTY's math problem(快速幂(对数法))、B--GTY's birthday gift(矩阵快速幂)
GTY's math problem Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- CF954F Runner's Problem(动态规划,矩阵快速幂)
CF954F Runner's Problem(动态规划,矩阵快速幂) 题面 CodeForces 翻译: 有一个\(3\times M\)的田野 一开始你在\((1,2)\)位置 如果你在\((i, ...
- BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】
A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...
随机推荐
- vim 文档加密
众所周知vim的加密方法是 :X 解密为输入:X后直接回车两次 注意此时必须使用:wq来保存,:x和shift+zz(ZZ)均无法保存此更改 此时注意 :wq"与":x" ...
- ZooKeeper原理及介绍
Zookeeper简介 1.1 什么是Zookeeper ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是大数据生态中的重要组件.它是 ...
- 大数据之Hadoop完全分布式集群搭建
1.准备阶段 1.1.新建三台虚拟机 Hadoop完全分市式集群是典型的主从架构(master-slave),一般需要使用多台服务器来组建.我们准备3台服务器(关闭防火墙.静态IP.主机名称).如果没 ...
- __metaclass__方法
metaclass这个属性叫做元类,它是用来表示这个类是由谁来帮他实例化创建的,说白了,就是相当于自己定制一个类. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
- java循环队列实现代码
public class Queue { //队首指针 private int front; //队尾指针 private int rear; //数组 private int[] arr; //数组 ...
- JAVA二维码编码&解码
QRCodeUtil.java package web; import java.awt.AlphaComposite; import java.awt.Color; import java.awt. ...
- spring boot技术干货
Spring Boot2 系列教程(一)纯 Java 搭建 SSM 项目 Spring Boot2 系列教程(二)创建 Spring Boot 项目的三种方式 Spring Boot2 系列教程(三) ...
- springboot的一些注解
springboot注解以及一些晦涩难理解的点介绍 @Validated 用于注入数值校验的注解(JSR303数据校验) @PropertySource 用于加载指定的配置文件,例如@Property ...
- leetcode 对角线遍历 JavaScript
JavaScript /** * @param {number[][]} matrix * @return {number[]} */ var findDiagonalOrder = function ...
- 多Y轴,下拉框渲染,相同类型不同数据
放上json文件: { "2017年3月": { "outKou": "5525.86", "inKou": " ...