分布式锁与实现(二)——基于ZooKeeper实现
引言
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。
基于ZooKeeper分布式锁的流程
- 在zookeeper指定节点(locks)下创建临时顺序节点node_n
- 获取locks下所有子节点children
- 对子节点按节点自增序号从小到大排序
- 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
- 若监听事件生效,则回到第二步重新进行判断,直到获取到锁
具体实现
下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。
- 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
- 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。
分布式锁
import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
/**
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock implements Lock, Watcher {
private ZooKeeper zk = null;
// 根节点
private String ROOT_LOCK = "/locks";
// 竞争的资源
private String lockName;
// 等待的前一个锁
private String WAIT_LOCK;
// 当前锁
private String CURRENT_LOCK;
// 计数器
private CountDownLatch countDownLatch;
private int sessionTimeout = 30000;
private List<Exception> exceptionList = new ArrayList<Exception>();
/**
* 配置分布式锁
* @param config 连接的url
* @param lockName 竞争资源
*/
public DistributedLock(String config, String lockName) {
this.lockName = lockName;
try {
// 连接zookeeper
zk = new ZooKeeper(config, sessionTimeout, this);
Stat stat = zk.exists(ROOT_LOCK, false);
if (stat == null) {
// 如果根节点不存在,则创建根节点
zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
}
// 节点监视器
public void process(WatchedEvent event) {
if (this.countDownLatch != null) {
this.countDownLatch.countDown();
}
}
public void lock() {
if (exceptionList.size() > 0) {
throw new LockException(exceptionList.get(0));
}
try {
if (this.tryLock()) {
System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁");
return;
} else {
// 等待锁
waitForLock(WAIT_LOCK, sessionTimeout);
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
}
public boolean tryLock() {
try {
String splitStr = "_lock_";
if (lockName.contains(splitStr)) {
throw new LockException("锁名有误");
}
// 创建临时有序节点
CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0],
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
System.out.println(CURRENT_LOCK + " 已经创建");
// 取所有子节点
List<String> subNodes = zk.getChildren(ROOT_LOCK, false);
// 取出所有lockName的锁
List<String> lockObjects = new ArrayList<String>();
for (String node : subNodes) {
String _node = node.split(splitStr)[0];
if (_node.equals(lockName)) {
lockObjects.add(node);
}
}
Collections.sort(lockObjects);
System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK);
// 若当前节点为最小节点,则获取锁成功
if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) {
return true;
}
// 若不是最小节点,则找到自己的前一个节点
String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1);
WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
return false;
}
public boolean tryLock(long timeout, TimeUnit unit) {
try {
if (this.tryLock()) {
return true;
}
return waitForLock(WAIT_LOCK, timeout);
} catch (Exception e) {
e.printStackTrace();
}
return false;
}
// 等待锁
private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException {
Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true);
if (stat != null) {
System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev);
this.countDownLatch = new CountDownLatch(1);
// 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁
this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS);
this.countDownLatch = null;
System.out.println(Thread.currentThread().getName() + " 等到了锁");
}
return true;
}
public void unlock() {
try {
System.out.println("释放锁 " + CURRENT_LOCK);
zk.delete(CURRENT_LOCK, -1);
CURRENT_LOCK = null;
zk.close();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
}
public Condition newCondition() {
return null;
}
public void lockInterruptibly() throws InterruptedException {
this.lock();
}
public class LockException extends RuntimeException {
private static final long serialVersionUID = 1L;
public LockException(String e){
super(e);
}
public LockException(Exception e){
super(e);
}
}
}
测试代码
public class Test {
static int n = 500;
public static void secskill() {
System.out.println(--n);
}
public static void main(String[] args) {
Runnable runnable = new Runnable() {
public void run() {
DistributedLock lock = null;
try {
lock = new DistributedLock("127.0.0.1:2181", "test1");
lock.lock();
secskill();
System.out.println(Thread.currentThread().getName() + "正在运行");
} finally {
if (lock != null) {
lock.unlock();
}
}
}
};
for (int i = 0; i < 10; i++) {
Thread t = new Thread(runnable);
t.start();
}
}
}
运行结果:

总体来说,如果了解到整个实现流程,使用zookeeper实现分布式锁并不是很困难,不过这也只是一个简单的实现,与前面实现Redis实现相比,本实现的稳定性更强,这是因为zookeeper的特性所致,在外界看来,zookeeper集群中每一个节点都是一致的。
完整代码可以在我的GitHub中查看:https://github.com/yangliu0/DistributedLock
分布式锁与实现(二)——基于ZooKeeper实现的更多相关文章
- 分布式锁的实现【基于ZooKeeper】
引言 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...
- 分布式锁实践(二)-ZooKeeper实现总结
写在最前面 前几周写了篇 利用Redis实现分布式锁 ,今天简单总结下ZooKeeper实现分布式锁的过程.其实生产上我只用过Redis或者数据库的方式,之前还真没了解过ZooKeeper怎么实现分布 ...
- 分布式锁与实现(一)——基于Redis实现 【比较靠谱】
转: 分布式锁与实现(一)——基于Redis实现 概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统 ...
- 分布式锁实现(二):Zookeeper
目录 前言 设计实现 一.基本算法 二.关键点 临时有序节点 监听 三.代码实现 Curator源码分析 一.基本使用 二.源码分析 后记 前言 紧跟上文的:分布式锁实现(一):Redis ,这篇我们 ...
- 分布式学习(一)——基于ZooKeeper的队列爬虫
zookeeper 一直琢磨着分布式的东西怎么搞,公司也没有相关的项目能够参与,所以还是回归自己的专长来吧--基于ZooKeeper的分布式队列爬虫,由于没什么人能够一起沟通分布式的相关知识,下面的小 ...
- 分布式锁实现方式介绍和Zookeeper实现原理
分布式锁实现的几种方式 基于数据库实现分布式锁(表.数据库排他锁) 基于缓存(redis,memcached,tair) 基于Zookeeper实现分布式锁 关注点: 单点问题?(集群) 失效时间?( ...
- 面试必问:分布式锁实现之zk(Zookeeper)
点赞再看,养成习惯,微信搜索[三太子敖丙]关注这个互联网苟且偷生的工具人. 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点.资料以及我的 ...
- 分布式锁与实现(一)——基于Redis实现
概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们"任何一个分布式系统都无法同时满足一致性(Consisten ...
- 分布式锁与实现(一)基于Redis实现
目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性( ...
- 分布式锁与实现(一)——基于Redis实现(转载)
php的完整流程,包护队列操作:http://www.cnblogs.com/candychen/p/5736128.html 概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致 ...
随机推荐
- jquery.zclip.js 不起作用
最近有用到复制的这个功能,选用jQuery的插件,正常使用的时候,没有任何问题: $('#copy_mobile_watch_address').zclip({ path: '/dist/plugin ...
- Alamofire源码解读系列(八)之安全策略(ServerTrustPolicy)
本篇主要讲解Alamofire中安全验证代码 前言 作为开发人员,理解HTTPS的原理和应用算是一项基本技能.HTTPS目前来说是非常安全的,但仍然有大量的公司还在使用HTTP.其实HTTPS也并不是 ...
- 【记录】解析具有合并单元格的Excel
最近公司让做各种数据表格的导入导出,就涉及到电子表格的解析,做了这么多天总结一下心得. 工具:NOPI 语言:C# 目的:因为涉及到导入到数据库,具有合并单元格的多行必然要拆分,而NPOI自动解析的时 ...
- SERVLET中的doGet与doPost两个方法之间的区别
get和post是http协议的两种方法,另外还有head, delete等 这两种方法有本质的区别,get只有一个流,参数附加在url后,大小个数有严格限制且只能是字符串.post的参数是通过另外的 ...
- 2017-3-28 javaScript DOM 操作
一.DOM的基本概念:DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化得东西. 二.Windows 对象操作:1.属性和方法:属性(值或者子对象):o ...
- 将一个对象push到数组之中的几点问题
在项目开发中我们需要向意数组中添加对象:首先想到的是利用数组的api,----push demo: var ar = [1,2,3] var ar2 = [11,22,33] var obj = { ...
- Shell 学习笔记之变量
变量 知识点 变量赋值和输出 variable="hello world" echo $variable 或者 echo ${variable} (最后格式统一使用后者) 只读变量 ...
- nodejs oj在线笔试应对方案(讲几种输入处理方法)
最近参加了一些线上笔试.但是...我不是学计算机的,只会js不会c++,java,c(好吧都学过,不过忘了).可怕的是我也没学过nodejs,怎么 办,怎么办.node不就是用的js吗?所以只用学会标 ...
- (iOS)sqlcipher和FMDB的使用总结(原创)
写这篇文章的原因是之前接触到了关于sqlite数据库加密的问题,一般数据库加密,无非是数据加密和数据库文件加密,当然数据库文件加密对手机效率可能更高一些. 下面就讲一下,自己对sqlcipher和fm ...
- zookeeper入门与实践
概述 Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务.名字服务.分布式同步.组服务等. 它有如下的一些特点: 简单 Zookeeper的核心是一 ...