Your data vis “Spidey-sense” & the need for a robust “utility belt”
@theboysmithy did a great piece on coming up with an alternate view for a timeline for an FT piece.
Here’s an excerpt (read the whole piece, though, it’s worth it):
Here is an example from a story recently featured in the FT: emerging- market populations are expected to age more rapidly than those in developed countries. The figures alone are compelling: France is expected to take 157 years (from 1865 to 2022) to triple the proportion of its population aged over 65, from 7 per cent to 21 per cent; for China, the equivalent period is likely to be just 34 years (from 2001 to 2035).
You may think that visualising this story is as simple as creating a bar chart of the durations ordered by length. In fact, we came across just such a chart from a research agency.
But, to me, this approach generates “the feeling” — and further scrutiny reveals specific problems. A reader must work hard to memorise the date information next to the country labels to work out if there is a relationship between the start date and the length of time taken for the population to age. The chart is clearly not ideal, but how do we improve it?
Alan went on to talk about the process of improving the vis, eventually turning to Joseph Priestly for inspiration. Here’s their makeover:
Alan used D3 to make this, which had me head scratching for a bit. Bostock is genius & I :heart: D3 immensely, but I never really thought of it as a “canvas” for doing general data visualization creation for something like a print publication (it’s geared towards making incredibly data-rich interactive visualizations). It’s 100% cool to do so, though. It has fine-grained control over every aspect of a visualization and you can easily turn SVGs into PDFs or use them in programs like Illustrator to make the final enhancements. However, D3 is not the only tool that can make a chart like this.
I made the following in R (of course):

The annotations in Alan’s image were (99% most likely) made with something like Illustrator. I stopped short of fully reproducing the image (life is super-crazy, still), but could have done so (the entire image is one ggplot2 object).
This isn’t an “R > D3” post, though, since I use both. It’s about (a) reinforcing Alan’s posits that we should absolutely take inspiration from historical vis pioneers (so read more!) + need a diverse visualization “utility belt” (ref: Batman) to ensure you have the necessary tools to make a given visualization; (b) trusting your “Spidey-sense” when it comes to evaluating your creations/decisions; and, (c) showing that R is a great alternative to D3 for something like this :-)
Spider-man (you expected headier references from a dude with a shield avatar?) has this ability to sense danger right before it happens and if you’re making an effort to develop and share great visualizations, you definitely have this same sense in your DNA (though I would not recommend tossing pie charts at super-villains to stop them). When you’ve made something and it just doesn’t “feel right”, look to other sources of inspiration or reach out to your colleagues or the community for ideas or guidance. You can and do make awesome things, and you do have a “Spidey-sense”. You just need to listen to it more, add depth and breadth to your “utility belt” and keep improving with each creation you release into the wild.
R code for the ggplot vis reproduction is below, and it + the CSV file referenced are in this gist.
library(ggplot2)
library(dplyr)
ft <- read.csv("ftpop.csv", stringsAsFactors=FALSE)
arrange(ft, start_year) %>%
mutate(country=factor(country, levels=c(" ", rev(country), " "))) -> ft
ft_labs <- data_frame(
x=c(1900, 1950, 2000, 2050, 1900, 1950, 2000, 2050),
y=c(rep(" ", 4), rep(" ", 4)),
hj=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5),
vj=c(1, 1, 1, 1, 0, 0, 0, 0)
)
ft_lines <- data_frame(x=c(1900, 1950, 2000, 2050))
ft_ticks <- data_frame(x=seq(1860, 2050, 10))
gg <- ggplot()
# tick marks & gridlines
gg <- gg + geom_segment(data=ft_lines, aes(x=x, xend=x, y=2, yend=16),
linetype="dotted", size=0.15)
gg <- gg + geom_segment(data=ft_ticks, aes(x=x, xend=x, y=16.9, yend=16.6),
linetype="dotted", size=0.15)
gg <- gg + geom_segment(data=ft_ticks, aes(x=x, xend=x, y=1.1, yend=1.4),
linetype="dotted", size=0.15)
# double & triple bars
gg <- gg + geom_segment(data=ft, size=5, color="#b0657b",
aes(x=start_year, xend=start_year+double, y=country, yend=country))
gg <- gg + geom_segment(data=ft, size=5, color="#eb9c9d",
aes(x=start_year+double, xend=start_year+double+triple, y=country, yend=country))
# tick labels
gg <- gg + geom_text(data=ft_labs, aes(x, y, label=x, hjust=hj, vjust=vj), size=3)
# annotations
gg <- gg + geom_label(data=data.frame(), hjust=0, label.size=0, size=3,
aes(x=1911, y=7.5, label="France is set to take\n157 years to triple the\nproportion ot its\npopulation aged 65+,\nChina only 34 years"))
gg <- gg + geom_curve(data=data.frame(), aes(x=1911, xend=1865, y=9, yend=15.5),
curvature=-0.5, arrow=arrow(length=unit(0.03, "npc")))
gg <- gg + geom_curve(data=data.frame(), aes(x=1915, xend=2000, y=5.65, yend=5),
curvature=0.25, arrow=arrow(length=unit(0.03, "npc")))
# pretty standard stuff here
gg <- gg + scale_x_continuous(expand=c(0,0), limits=c(1860, 2060))
gg <- gg + scale_y_discrete(drop=FALSE)
gg <- gg + labs(x=NULL, y=NULL, title="Emerging markets are ageing at a rapid rate",
subtitle="Time taken for population aged 65 and over to double and triple in proportion (from 7% of total population)",
caption="Source: http://on.ft.com/1Ys1W2H")
gg <- gg + theme_minimal()
gg <- gg + theme(axis.text.x=element_blank())
gg <- gg + theme(panel.grid=element_blank())
gg <- gg + theme(plot.margin=margin(10,10,10,10))
gg <- gg + theme(plot.title=element_text(face="bold"))
gg <- gg + theme(plot.subtitle=element_text(size=9.5, margin=margin(b=10)))
gg <- gg + theme(plot.caption=element_text(size=7, margin=margin(t=-10)))
gg
Your data vis “Spidey-sense” & the need for a robust “utility belt”的更多相关文章
- Fitting Bayesian Linear Mixed Models for continuous and binary data using Stan: A quick tutorial
I want to give a quick tutorial on fitting Linear Mixed Models (hierarchical models) with a full var ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- JavaScript资源大全中文版(Awesome最新版)
Awesome系列的JavaScript资源整理.awesome-javascript是sorrycc发起维护的 JS 资源列表,内容包括:包管理器.加载器.测试框架.运行器.QA.MVC框架和库.模 ...
- PCI Express(四) - The transaction layer
原文出处:http://www.fpga4fun.com/PCI-Express4.html 感觉没什么好翻译的,都比较简单,主要讲了TLP的帧结构 In the transaction layer, ...
- Task schedule 分类: 比赛 HDU 查找 2015-08-08 16:00 2人阅读 评论(0) 收藏
Task schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- Doubles 分类: POJ 2015-06-12 18:24 11人阅读 评论(0) 收藏
Doubles Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19954 Accepted: 11536 Descrip ...
- codevs 3732 解方程
神题不可言会. f(x+p)=f(x)(mod p) #include<iostream> #include<cstdio> #include<cstring> # ...
- notes: the architecture of GDB
1. gdb structure at the largest scale,GDB can be said to have two sides to it:1. The "symbol si ...
- poj 2531 Network Saboteur(经典dfs)
题目大意:有n个点,把这些点分别放到两个集合里,在两个集合的每个点之间都会有权值,求可能形成的最大权值. 思路:1.把这两个集合标记为0和1,先默认所有点都在集合0里. 2 ...
随机推荐
- 05 Training versus Testing
train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...
- JS滚动加载
var one = true;//设置一个全局变量 $(window).scroll(function () { var hight = document.body.scrollHeight - do ...
- [Linux] PHP程序员玩转Linux系列-使用supervisor实现守护进程
1.PHP程序员玩转Linux系列-怎么安装使用CentOS 2.PHP程序员玩转Linux系列-lnmp环境的搭建 3.PHP程序员玩转Linux系列-搭建FTP代码开发环境 4.PHP程序员玩转L ...
- win10 如何配置 java jdk1.8环境变量(2017.2.24)
win10 如何配置 java jdk 环境变量 这里的win10 为全新安装的系统 一.安装 下载 jdk 64位 windows 版本安装(默认安装) 默认安装的路径: C:\Program Fi ...
- 关于 __proto__和prototype的一些理解
var Person = function(name) {}; Person.prototype.say = function() { console.log("Person say&quo ...
- CF Manthan, Codefest 16 G. Yash And Trees 线段树+bitset
题目链接:http://codeforces.com/problemset/problem/633/G 大意是一棵树两种操作,第一种是某一节点子树所有值+v,第二种问子树中节点模m出现了多少种m以内的 ...
- python3.x元组打印错误 TypeError: unsupported operand type(s) for %: 'NoneType' and 'tuple'
原创by南山南北秋悲 欢迎引用!请注明原地址:http://www.cnblogs.com/hwd9654/p/5676746.html 谢谢! TypeError: unsupported ope ...
- 蓝桥杯-打印十字图-java
/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...
- openlayers应用“三”:百度地图纠偏
前两篇文章介绍了openlayers3加载百度在线和离线瓦片地图,页面上能够正常显示.地图加载后在地图上显示一条GPS轨迹,发现离实际位置相差太远,如下图所示: 轨迹形状和实际形状相同,但是位移太远, ...
- Python学习之路-Day2-Python基础2
Python学习之路第二天 学习内容: 1.模块初识 2.pyc是什么 3.python数据类型 4.数据运算 5.bytes/str之别 6.列表 7.元组 8.字典 9.字符串常用操作 1.模块初 ...