最近在和小伙伴们做充电与通信程序的架构迁移。迁移前的架构是,通信程序负责接收来自充电集控设备的数据实时数据,通过Thrift调用后端的充电服务,充电服务收到响应后放到进程的Queue中,然后在管理线程的调度下,启动多线程进程数据处理。

随着业务规模的不断扩大和对系统可用性的逐步提高。现在这个架构存在很多的问题,比如:

1.充电服务重启,可能会丢数据。

2.充电服务重启会波及影响通信服务。

3.充电服务与通信服务面对的需求和变化是不一样,强依赖的架构带来很多的问题。

为了解决上述的这些问题,项目组决定借助Kafka对程序进行改造 。总体思路是,通信服务收到数据后,把数据存储到kafka,然后通过一个异步任务处理框架实时消费Kafka数据,并调用业务插件处理。

通过上面思路我们可以看到,系统整体架构仅是引入了一个MQ中间件,业务逻辑并没有发生本质的变化。但是在实际的压测中,却发现新架构下的程序性能比原来要慢很多。顺便说一下,压测场景是模拟10万充电终端离网上下线,短时间内会生成大约32万的消息量,遥信:10万,遥测:10万,电量10万,其他:2万。

通过ANTS分析相关进程,发现MonitorDataUploader.AddToLocalCache方法占用了78%左右的CPU。此方法不是业务方法,是为了监控程序的运行情况而加入的埋点监控。通过进一步分析看,在30多万消息量下,会产生约1000万甚至更高的监控消息。在如此高的并发下,这部分程序存在很严重的性能问题,导致系统的资源占用很高,系统运行变慢。

OK。既然问题已经清楚,那就开始优化吧。虽然可以把监控埋点屏蔽,临时解决程序的性能问题。但是,这对一个互联网应用来说是要不得的。没有监控,系统的运行健康状况就一无所知,这对一个SLA要求99.95%的系统来说,是不现实的。所以,必须全力优化监控程序在上报海量监控日志上的性能问题。

为了便于验证问题,写了一个模拟程序.通过模拟程序,很容易的再现了CPU占用很高的情况。

代码实现中,监控消息的存储是通过BlockingCollection存储的,并且设置了Collection大小为1000万。

var cache = new BlockingCollection<MonitorData>(boundedCapacity);

通过阅读BlockingCollection 的说明,可以看到空构造函数可以不设置Collection的上限。看到这个解释,怀疑是限制了上线的Collection存在性能问题。与是把代码中对BlockingCollection 的构造改成空构造,再次测试。测试结果大出意料,性能表现有了非常好的提升。

为了进一步验证问题,把对BlockingCollection 的构造改了限制大小,并设置上线为1个亿。测试时消息总量为5000万,验证一下是否是BlockingCollection 达到上限后,引起的严重性能问题。通过测试数据看,CPU消耗与不限制时基本一致。通过此可以确定,BlockingCollection 在设置了容量上限后,如果消息超过容量,性能将会非常差。

通过上面的调优,在发送5000万监控消息的情况下,程序的CPU在60% 左右持续30s左右。虽然性能有所改善,但是还不是很尽如人意。 有没有更好的解决方案呢?通过不算的思考和尝试,终于找到了一个更好的解决方案:基于双缓存+线程级多桶式Collection。此种模式下性能表现如下,CPU平均在30%左右,持续时间在15s左右。性能又有近一倍的提升。具体实现方案下次再分享。

记一次高并发场景下.net监控程序数据上报的性能调优的更多相关文章

  1. Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%。再往后,每提高0.1%,优化难度成指数级增长了。哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额。 在高并发场景下,提供了保证线程安全的对象、方法。比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好。线程安全的StringBuilder取代S

    Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机 ...

  2. 【转】记录PHP、MySQL在高并发场景下产生的一次事故

    看了一篇网友日志,感觉工作中值得借鉴,原文如下: 事故描述 在一次项目中,上线了一新功能之后,陆陆续续的有客服向我们反应,有用户的个别道具数量高达42亿,但是当时一直没有到证据表示这是,确实存在,并且 ...

  3. 高并发场景下System.currentTimeMillis()的性能问题的优化 以及SnowFlakeIdWorker高性能ID生成器

    package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.a ...

  4. HttpClient在高并发场景下的优化实战

    在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也. ...

  5. 高并发场景下System.currentTimeMillis()的性能问题的优化

    高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.T ...

  6. C++高并发场景下读多写少的解决方案

    C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也 ...

  7. C++高并发场景下读多写少的优化方案

    概述 一谈到高并发的优化方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读 ...

  8. MySQL在大数据、高并发场景下的SQL语句优化和"最佳实践"

    本文主要针对中小型应用或网站,重点探讨日常程序开发中SQL语句的优化问题,所谓“大数据”.“高并发”仅针对中小型应用而言,专业的数据库运维大神请无视.以下实践为个人在实际开发工作中,针对相对“大数据” ...

  9. 高并发场景下System.currentTimeMillis()的性能优化

    一.前言 System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我也不知道,不过听说在100倍左右),然而该方法又是一个常用方法, 有时不得不使用, ...

随机推荐

  1. C# linq创建嵌套组

    以下示例演示如何在 LINQ 查询表达式中创建嵌套组. 首先根据学生年级创建每个组,然后根据每个人的姓名进一步细分为小组. public void QueryNestedGroups() { var ...

  2. Webpack打包构建太慢了?试试几个方法

    Webpack是个很流行的打包工具,但其打包速度却一直被吐槽着 如果不用上一些打包的优化建议,单单打包两三个文件就能花上好几秒,放上几十个入口文件依赖几百上千个包的话,几分钟十几分钟妥妥的 本文整理了 ...

  3. Oracle-3 - :超级适合初学者的入门级笔记--用户权限,set运算符,高级子查询

    上一篇的内容在这里第二篇内容, 用户权限:创建用户,创建角色,使用grant  和 revoke 语句赋予和回收权限,创建数据库联接 创建用户:create user xxx identified b ...

  4. C# 4动态编程新特性与DLR剖析

    =================================================== 注:很久没有发文了,贴一篇新文吧.从Word直接贴过来的,没仔细排版,诸位海涵.有关DLR和C# ...

  5. .net core 开发短网址平台的思路

    最近有个客户要求开发一套短网址网站,小编现在都使用.net core进行网站开发了,以是厘厘思路,想想使用.net core 的中间件应该很容易实现. 1. 构建一个中间件,监测网站的响应状态,代码如 ...

  6. [转载] Redis实现分布式锁

    转载自http://zhidao.baidu.com/link?url=m56mmWYwRgCymsaLZ2tx-GWDy5FYmUWGovEtuApjTpktHS3bhofrCS-QVGiLoWeS ...

  7. 使用XML设计某大学主页站点地图--ASP.NET

    一.使用XML设计某大学主页站点地图步骤如下 1.创建一个空网站,在项目文件上右击,然后[添加新项],选择[站点地图],新建一个可默认为Web.sitemap的文件. 2.在Web.sitemap里修 ...

  8. Python:多线程编程

    1.IO编程 IO(input/output).凡是用到数据交换的地方,都会涉及io编程,例如磁盘,网络的数据传输.在IO编程中,stream(流)是一种重要的概念,分为输入流(input strea ...

  9. 结合提供者模式解析Jenkins源码国际化的实现

    关键字:提供者模式,设计模式,github,gerrit,源码学习,jenkins,国际化,maven高级,maven插件 本篇文章的源码展示部分由于长度问题不会全部粘贴展示,或许只是直接提及,需要了 ...

  10. input常见类型

       值   描述  text   默认.定义单行输入字段,用户可在其中输入文本.默认是 20 个字符  button   定义可点击的按钮(大多与 JavaScript 使用来启动脚本)  chec ...