在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99

输入格式:

5      //表示三角形的行数    接下来输入三角形

7

3   8

8   1   0

2   7   4   4

4   5   2   6   5

要求输出最大和

用递归解决很简单,从上到下遍历一边。

从第一行第一个开始寻找,判断左下或右下哪一个更大,用缓存数组提高效率

     if (i>=n||j>=n) {
return 0;
}
if (cache[i][j] != -1) {
return cache[i][j];
}
return cache[i][j]=Math.max(maxSum(i+1, j, n), maxSum(i+1,j+1,n))+num[i][j];

但是递归的效率很慢,不是一个好方法。

那么动态规划呢。

从下至上,首先计算最底层 。底层是无需计算的,保存即可。

下一步计算倒数第二层。

那么用循环就可以很简单的计算出最上面的第一行第一个即为所求

 public class POJ1163 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[][] num = new int[n][n];
int[][] cache = new int[n][n];
int i = 0;
while (i < n) {
int j = 0;
while (j <= i) {
num[i][j] = sc.nextInt();
j++;
}
i++;
}
for (int j = 0; j < n; j++) {
Arrays.fill(cache[j], -1);
}
long startTime=System.currentTimeMillis(); //获取开始时间
System.out.println(maxSum(0,0,n,cache,num));
long endTime=System.currentTimeMillis(); //获取结束时间
System.out.println("程序运行时间: "+(endTime-startTime)+"ms"); int[][] cal = new int[n][n];
startTime=System.currentTimeMillis(); //获取开始时间
for (i = 0; i < n; i++) {
cal[n-1][i] = num[n-1][i]; //保存最后一行就可以了
}
for ( i = n-2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
cal[i][j] = Math.max(cal[i+1][j], cal[i+1][j+1])+num[i][j];
}
}
System.out.println(cal[0][0]);
endTime=System.currentTimeMillis(); //获取结束时间
System.out.println("程序运行时间: "+(endTime-startTime)+"ms"); }
public static int maxSum(int i,int j, int n, int[][] cache,int [][] num) {
if (i>=n||j>=n) {
return 0;
}
if (cache[i][j] != -1) {
return cache[i][j];
}
return cache[i][j]=Math.max(maxSum(i+1, j, n,cache,num), maxSum(i+1, j+1,n,cache,num))+num[i][j];
} }

还有一种节省空间的方法 用一维数组保存最大值

     int[] cal1 = new int[n];
for (i = 0; i < n; i++) {
cal1[i] = num[n-1][i]; //sikao
}
for ( i = n-2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
cal1[j] = Math.max(cal1[j], cal1[j+1])+num[i][j];
}
}

接下来,我们就进行一下总结:

    递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。

    动规解题的一般思路

    1. 将原问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。

    2.确定状态

  • 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
  • 所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

    3.确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

    4. 确定状态转移方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

数字三角形的状态转移方程:

    能用动规解决的问题的特点

1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

 

动态规划略有所得 数字三角形(POJ1163)的更多相关文章

  1. 动态规划之数字三角形(POJ1163)

    在下面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 既然求目标问题是根据查表得来的,自然 ...

  2. 动态规划入门——数字三角形(Java)

    动态规划的概念对于新手来说枯燥难懂,就算看懂了,做题的时候依旧抓耳挠腮的毫无头绪,这些比较难理解的算法,还是需要根据例子来一步步学习和理解,从而熟练掌握,下面,咱们就通过一个简单的小例子来学习动态规划 ...

  3. dp递推 数字三角形,dp初学者概念总结

    数字三角形(POJ1163)          在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出 ...

  4. hihoCoder #1037 : 数字三角形 (动态规划)

    题目链接:https://hihocoder.com/problemset/problem/1037# 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋 ...

  5. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  6. [动态规划]数字三角形(版本I-III)

    level 1 1.1题目 1.1.1题目描述 考虑在下面被显示的数字金字塔. 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大.每一步可以走到左下方的点也可以到达右下方的点. 在 ...

  7. vijos 1006 晴天小猪历险记之Hill——数字三角形的终极变化

    题目链接:https://vijos.org/p/1006 数字三角形原题看这里:http://www.cnblogs.com/huashanqingzhu/p/7326837.html 背景 在很久 ...

  8. G:数字三角形

    总时间限制: 1000ms 内存限制: 65536kB描述73   88   1   02   7   4   44   5   2   6   5 (图1) 图1给出了一个数字三角形.从三角形的顶部 ...

  9. [TYVJ] P1044 数字三角形

    数字三角形 背景 Background 09年 USACO 11月月赛  铜牌第一道   描述 Description 示出了一个数字三角形. 请编一个程序计算从顶至底的某处的一条路径,使该路径所经过 ...

随机推荐

  1. [CSS3]学习笔记-CSS基本样式讲解

    1.CSS样式-背景 CSS运行应用纯色作背景,也允许使用背景图像创建相当复杂的效果 <!DOCTYPE html> <html> <head lang="en ...

  2. C# 结构体 枚举类型

    注意:枚举类型和结构体都属于值类型. 结构体:就是一个自定义的集合,里面可以放各种类型的元素,用法大体跟集合一样. 一.定义的方法: struct student { public int nianl ...

  3. 从你的全世界切过(胡说八道支持向量机SVM小故事)

    背景 据说很久很久以前, 澳门有一家"胡说八道大赌场", 专门提供各种奇奇怪怪的玩法. 其中有一个赌博叫"从你的全世界切过"(连名字也这么奇怪). 玩法是在一张 ...

  4. Java用自定义的类型作为HashMap的key

      需要重写hashCode()和equals()方法才可以实现自定义键在HashMap中的查找. public class PhoneNumber { private int prefix; //区 ...

  5. 学习Cocos2d的博客 --推荐

    http://xiaominghimi.blog.51cto.com/2614927/d-6/p-1

  6. ajax提交File文件

    <script type="text/javascript">    $(function() {        $("input[name='image'] ...

  7. ubuntu通过虚拟域名访问不了 502 / 网络错误

    ##之前把虚拟机的lamp环境搭建好,但是通过自己windows在浏览器访问一直不能正常运行. 简单说明一下我的相关设置: 1.设置windows的ip映射 C:\Windows\System32\d ...

  8. DNS详解

    许多应用层软件经常直接使用域名系统 DNS (Domain Name System),但计算机的用户只是间接而不是直接使用域名系统. 因特网采用层次结构的命名树作为主机的名字,并使用分布式的域名系统 ...

  9. Unity渲染优化中文翻译(二)——CPU的优化策略

    紧接上一篇文章,继续渲染的优化问题,若有错误,请指出,让我也学习进步,谢谢. 如果游戏渲染问题来自CPU 概括的来说,CPU在一帧的渲染中的工作可以分为三个部分: . 决定谁需要被渲染 . 为GPU准 ...

  10. (Jquery)避免数据相加小数点后产生多位数和计算精度损失

    /** * 加法运算,避免数据相加小数点后产生多位数和计算精度损失. * * @param num1加数1 | num2加数2 */ function numAdd(num1, num2) { var ...