【noi 2.6_9275】&【bzoj 3398】Bullcow(DP){Usaco2009 Feb}
题意:一共有N只牡牛(公牛)和牝牛(母牛),每2只牡牛间至少要有K只牝牛才不会斗殴。问无斗殴发生的方案数。
解法:f[i][j]表示一共i只牛,最后一只是j(0为牝牛,1为牡牛)的方案数。
f[i][0]=f[i-1][1]+f[i-1][0]; f[i][1]=f[i-k-1][1]+f[i-k-1][0](这个小心不要漏了,因为没有要求2只牡牛间一定是K只牝牛);
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 100010
7 #define mod 5000011
8
9 int f[N][2];
10 int main()
11 {
12 int n,k;
13 scanf("%d%d",&n,&k);
14 f[1][0]=f[1][1]=1;
15 for (int i=2;i<=n;i++)
16 {
17 f[i][0]=(f[i-1][0]+f[i-1][1])%mod;
18 f[i][1]=(i>k+1)?f[i-k-1][0]+f[i-k-1][1]:1;
19 }
20 printf("%d\n",(f[n][0]+f[n][1])%mod);
21 return 0;
22 }
1
优化:可发现每次调用状态都是[0]和[1]一起,所以可以简化成一维。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 100010
7 #define mod 5000011
8
9 int f[N];
10 int main()
11 {
12 int n,k;
13 scanf("%d%d",&n,&k);
14 f[1]=2;
15 for (int i=2;i<=n;i++)
16 f[i]=(f[i-1]+((i>k+1)?f[i-k-1]:1))%mod;
17 printf("%d\n",f[n]);
18 return 0;
19 }
2
【noi 2.6_9275】&【bzoj 3398】Bullcow(DP){Usaco2009 Feb}的更多相关文章
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- 【BZOJ】1600: [Usaco2008 Oct]建造栅栏(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1600 说好的今天开始刷水.. 本题一开始我以为是排列组合,但是自己弱想不出来,只想到了如果四边有一条 ...
- 【BZOJ】1801 [Ahoi2009]chess 中国象棋(dp)
题目 传送门:QWQ 分析 发现我们关心的不是棋子的位置,我们只关心棋子数量就ok. 首先每行每列最多两个棋子.这是显然的. 然后我觉得本题最难的部分就是对行进行讨论,蒟蒻我一直被限制在了对格点讨论. ...
- 【BZOJ】2021: [Usaco2010 Jan]Cheese Towers(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=2021 噗,自己太弱想不到. 原来是2次背包. 由于只要有一个大于k的高度的,而且这个必须放在最顶,那 ...
- 【noi 2.6_9284】盒子与小球之二(DP)
题意:有N个有差别的盒子和分别为A个和B个的红球和蓝球,盒子内可空,问方案数. 解法:我自己打的直接用了求组合C的公式,把红球和蓝球分开看.对于红球,在N个盒子可放任意个数,便相当于除了A个红球还有N ...
- 【noi 2.6_8787】数的划分(DP){附【转】整数划分的解题方法}
题意:问把整数N分成K份的分法数.(与"放苹果"不同,在这题不可以有一份为空,但可以类比)解法:f[i][j]表示把i分成j份的方案数.f[i][j]=f[i-1][j-1](新开 ...
- 【noi 2.6_6252】带通配符的字符串匹配(DP)
题意:给出一个带有通配符("?"可以代替一个字符,"*"可以代替零个或多个字符)的a字符串和一个不带通配符的b字符串,判断他们是否能够匹配. 解法:f[i][j ...
- 【UVa】And Then There Was One(dp)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...
随机推荐
- IntelliJ IDEA启动界面的秘密:当编程遇到艺术
细心的同学会发现Intellij IDEA每次发版本的时候都会有不同的启动界面背景,都很比较抽象的艺术图像. JetBrains的其它产品也有自己独特的设计. 但是这背后是怎么实现的.有什么寓意却很少 ...
- 超过varchar定义长度
mysql> select version();+------------+| version() |+------------+| 5.1.73-log |+------------+1 ro ...
- ctfhub技能树—web前置技能—http协议—302跳转
开启靶机 打开环境,查看显示 点击Give me Flag后发生跳转 根据题目提示为HTTP临时重定向 简单记录一下HTTP临时重定向是什么 HTTP重定向:服务器无法处理浏览器发送过来的请求(req ...
- JVM虚拟机基础
JVM 全称Java Virtual Machine,也就是我们耳熟能详的Java 虚拟机.它能识别.class 后缀的文件,并且能够解析它的指令,最终调用操作系统上的函数,完成我们想要的操作. Ja ...
- 04. struts2中Result配置的各种视图转发类型
概述 <action name="helloworld" class="com.liuyong666.action.HelloWorldAction"&g ...
- Redis 实战 —— 08. 实现自动补全、分布式锁和计数信号量
自动补全 P109 自动补全在日常业务中随处可见,应该算一种最常见最通用的功能.实际业务场景肯定要包括包含子串的情况,其实这在一定程度上转换成了搜索功能,即包含某个子串的串,且优先展示前缀匹配的串.如 ...
- centos7服务器远程安装图形化页面
以下是我用云的centos 7.4的安装步骤,照着我的命令操作肯定OK的,其他的就不敢保证了... 1.首先安装X(X Window System),命令为:(注意有引号) yum groupinst ...
- 【Azure Developer】在Azure Resource Graph Explorer中查看当前订阅下的所有资源信息列表并导出(如VM的名称,IP地址内网/公网,OS,区域等)
问题描述 通过Azure的Resource Graph Explorer(https://portal.azure.cn/#blade/HubsExtension/ArgQueryBlade),可以查 ...
- 将连续增长 N 次字符串所需的内存重分配次数从必定 N 次降低为最多 N 次 二进制安全
SDS 与 C 字符串的区别 - Redis 设计与实现 http://redisbook.com/preview/sds/different_between_sds_and_c_string.htm ...
- 长连接开发踩坑之netty OOM问题排查实践
https://mp.weixin.qq.com/s/jbXs7spUCbseMX-Vf43lPw 原创: 林健 51NB技术 2018-07-13