Kubernetes Pod水平自动伸缩(HPA)
HPA简介
HAP,全称 Horizontal Pod Autoscaler, 可以基于 CPU 利用率自动扩缩 ReplicationController、Deployment 和 ReplicaSet 中的 Pod 数量。 除了 CPU 利用率,也可以基于其他应程序提供的自定义度量指标来执行自动扩缩。 Pod 自动扩缩不适用于无法扩缩的对象,比如 DaemonSet。
Pod 水平自动扩缩特性由 Kubernetes API 资源和控制器实现。资源决定了控制器的行为。 控制器会周期性的调整副本控制器或 Deployment 中的副本数量,以使得 Pod 的平均 CPU 利用率与用户所设定的目标值匹配。
Pod HAP工作机制示意图

实际生产中,广泛使用这四类指标:
1、Resource metrics - CPU核内存利用率指标
2、Pod metrics - 例如网络利用率和流量
3、Object metrics - 特定对象的指标,比如Ingress, 可以按每秒使用请求数来扩展容器
4、Custom metrics - 自定义监控,比如通过定义服务响应时间,当响应时间达到一定指标时自动扩容
好了,概念就说这些,想了解更多,请参看官网,现在开始实战。
示例
1、首先我们部署一个nginx,副本数为2,请求cpu资源为200m。同时为了便宜测试,使用NodePort暴露服务。命名空间:hpa
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: nginx
name: nginx
namespace: hpa
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- image: nginx
name: nginx
resources:
requests:
cpu: 200m
memory: 100Mi
---
apiVersion: v1
kind: Service
metadata:
name: nginx
namespace: hpa
spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:
app: nginx
2、查看部署结果
[root@k8s-node001 HPA]# kubectl get po -n hpa
NAME READY STATUS RESTARTS AGE
nginx-5c87768685-48b4v 1/1 Running 0 8m38s
nginx-5c87768685-kfpkq 1/1 Running 0 8m38s
3、创建HPA
简单说下:这里创建一个HPA,用于控制我们上一步骤中创建的 Deployment,使 Pod 的副本数量维持在 1 到 10 之间。
HPA 将通过增加或者减少 Pod 副本的数量(通过 Deployment)以保持所有 Pod 的平均 CPU 利用率在 50% 以内。
算法参见
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: nginx
namespace: hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: nginx
minReplicas: 1
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 50
4、查看部署结果
[root@k8s-node001 HPA]# kubectl get hpa -n hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/50% 1 10 2 50s
5、压测,观察Pod数和HPA变化
执行压测命令
[root@k8s-node001 ~]# ab -c 1000 -n 100000000 http://192.168.100.185:30792/
This is ApacheBench, Version 2.3 <$Revision: 1843412 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 192.168.100.185 (be patient)
观察变化
[root@k8s-node001 HPA]# kubectl get hpa -n hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 303%/50% 1 10 7 12m
[root@k8s-node001 HPA]# kubectl get po -n hpa
NAME READY STATUS RESTARTS AGE
pod/nginx-5c87768685-6b4sl 1/1 Running 0 85s
pod/nginx-5c87768685-99mjb 1/1 Running 0 69s
pod/nginx-5c87768685-cls7r 1/1 Running 0 85s
pod/nginx-5c87768685-hhdr7 1/1 Running 0 69s
pod/nginx-5c87768685-jj744 1/1 Running 0 85s
pod/nginx-5c87768685-kfpkq 1/1 Running 0 27m
pod/nginx-5c87768685-xb94x 1/1 Running 0 69s
从以上输出可以看出,hpa TARGETS达到了303%,需要扩容。pod数自动扩展到了7个。
继续等待压测结束或者直接打断压测
[root@k8s-node001 ~]# kubectl get hpa -n hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 20%/50% 1 10 7 16m
。。。N分钟后。。。
[root@k8s-node001 ~]# kubectl get hpa -n hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/50% 1 10 7 18m
。。。再过N分钟后。。。
[root@k8s-node001 ~]# kubectl get po -n hpa
NAME READY STATUS RESTARTS AGE
nginx-5c87768685-jj744 1/1 Running 0 11m
这时,CPU 利用率已经降到 0,所以 HPA 将自动缩减副本数量至 1。
这里需要注意下:为什么会将副本数降为1,而不是我们部署时指定的replicas: 2呢?
因为在创建HPA时,指定了副本数范围,这里是minReplicas: 1,maxReplicas: 10。所以HPA在缩减副本数时减到了1。
Tips: 自动扩缩完成副本数量的改变可能需要几分钟的时间。
总结

Kubernetes Pod水平自动伸缩(HPA)的更多相关文章
- kubernetes之Pod水平自动伸缩(HPA)
https://k8smeetup.github.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ Horizon ...
- Horizontal Pod Autoscaler(Pod水平自动伸缩)
Horizontal Pod Autoscaler 根据观察到的CPU利用率(或在支持自定义指标的情况下,根据其他一些应用程序提供的指标)自动伸缩 replication controller, de ...
- 13.深入k8s:Pod 水平自动扩缩HPA及其源码分析
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 源码版本是1.19 Pod 水平自动扩缩 Pod 水平自动扩缩工作原理 Pod 水平自动 ...
- kubernetes云平台管理实战:HPA水平自动伸缩(十一)
一.自动伸缩 1.启动 [root@k8s-master ~]# kubectl autoscale deployment nginx-deployment --max=8 --min=2 --cpu ...
- 通过一个实际例子理解Kubernetes里pod的自动scale - 水平自动伸缩
kubectl scale命令用于程序在负载加重或缩小时进行pod扩容或缩小,我们通过一些实际例子来观察scale命令到底能达到什么效果. 命令行创建一个deployment: kubectl run ...
- kubernetes pod的弹性伸缩———基于pod自定义custom metrics(容器的IO带宽)的HPA
背景 自Kubernetes 1.11版本起,K8s资源采集指标由Resource Metrics API(Metrics Server 实现)和Custom metrics api(Promet ...
- [Kubernetes]Pod字段自动填充
PodPreset(Pod预设置)在Kubernetes v1.11以后出现,开发人员只需要提交一个基本的Pod YAML,Kubernetes就可以自动给对应的Pod对象加上运维人员设定好的其他必要 ...
- [置顶]
Kubernetes1.7新特性:新增自动伸缩条件和参数
一.核心概念 Horizontal Pod Autoscaling,简称HPA,是Kubernetes中实现POD水平自动伸缩的功能.云计算具有水平弹性的特性,这个是云计算区别于传统IT技术架构的主要 ...
- 【六】K8s-Pod 水平自动扩缩实践(简称HPA)
一.概述 Pod 水平自动扩缩(Horizontal Pod Autoscaler)简称 HPA,HPA 可以根据 CPU 利用率进行自动伸缩 Pod 副本数量,除了 CPU 利用率,也可以基于其他应 ...
随机推荐
- C语言中存储多个字符串的两种方式
C语言中存储多个字符串的两种方式 方式一 二维字符串数组 声明: char name[][] = { "Justinian", "Momo", " ...
- 23种设计模式 - 接口隔离(Facade - Proxy - Mediator - Adapter)
其他设计模式 23种设计模式(C++) 每一种都有对应理解的相关代码示例 → Git原码 ⌨ 接口隔离 在组件构建过程中,某些接口之间直接的依赖常常会带来很多问题.甚至根本无法实现.采用添加一层间接( ...
- React的几种组件
一.函数组件 该函数在React中是一个有效的组件,可以接收唯一带有数据的props(代表属性)对象,并返回一个React元素.函数式组件要特别注意,组件名称首字母一定要大写.这种方式也成为无状态组件 ...
- vagrant安装的坑
关于VAGRANT安装过程的坑 标签: 虚拟化 闲来无聊 试试vagrant虚拟化技术 安装过程中坑太多了 所以记录下方便以后 注意: 执行 vagrant up 命令报错 如下 PS F ...
- android 数据绑定(6)自定义绑定方法、双向数据绑定
1.官方文档 https://developer.android.com/topic/libraries/data-binding/binding-adapters https://developer ...
- 设计模式(多个if的处理)
使用场景 如果在代码中出现大量if判断,再执行一些比较复杂的业务操作,类似于以下情况. @Test void test() { String str = "A"; if (str. ...
- 如何编写高质量的C#代码(一)
从"整洁代码"谈起 一千个读者,就有一千个哈姆雷特,代码质量也同样如此. 想必每一个对于代码有追求的开发者,对于"高质量"这个词,或多或少都有自己的一丝理解.当 ...
- log4j日志文件输出保存
og4j.appender.A1=org.apache.log4j.DailyRollingFileAppender log4j.appender.A1.File=app.log log4j.appe ...
- 取得min和max之间包括端点的随机整数
产生随机数的函数用处不少,写一个放博客里备用,函数如下: /** * get a random integer between min and max * @param min * @param ma ...
- 解锁用户scott并授权
请输入用户名: system 输入口令: 连接到: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Producti ...