题目内容

洛谷链接

给出一个\(n\)个节点,\(m\)条边的无向图和两个节点\(s\)和\(t\),问这两个节点的路径中有几个点必须经过。

输入格式

第一行是\(n\)和\(m\)。

接下来\(m\)行,给出两个数表示这两个节点之间存在一条边。

接下来一行一个整数\(Q\),表示询问个数。

接下来\(Q\)行,每行两个整数\(s\)和\(t\)(\(s\not= t\))。

数据范围

\(0<n\le 10000,0<m\le 100000,0<Q\le 10000,0<s,t\le m\)

输出格式

对于每个询问,输出一行表示答案

样例输入

5 6

1 2

1 3

2 3

3 4

4 5

3 5

2

2 3

2 4

0 0

样例输出

0

1

思路

这个题问的就是\(s\)到\(t\)路径上割点的个数。

点双缩点,可以知道,每条边仅在一个联通块中,把割点和它相邻的联通块建边,从而构造棵树。

询问\(s\)边和\(t\)边,需要求它们分别属于哪个连通块。所以问题转化成了一棵树中,有些点已标记为割点,询问两个非割点之间路径上有多少个割点。

因此选择一个点作为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA即可。

代码

#include<cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=10000+10;
const int maxm=100000+10; struct Edge{
int u,to,next,vis,id;
}edge[maxm<<1]; int head[maxn<<1],dfn[maxn<<1],low[maxn],st[maxm],iscut[maxn],subnet[maxn],bian[maxm];
int cnt,time,top,btot;
vector<int> belong[maxn]; void add(int u,int to){
edge[cnt].u=u;
edge[cnt].to=to;
edge[cnt].next=head[u];
edge[cnt].vis=0;
head[u]=cnt++;
} void init(int n){
for(int i=0;i<=n;i++){
head[i]=-1;
dfn[i]=iscut[i]=subnet[i]=0;
belong[i].clear();
}
cnt=time=top=btot=0;
} void dfs(int u){
dfn[u]=low[u]=++time;
for(int i=head[u];i!=-1;i=edge[i].next){
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
int to=edge[i].to;
st[++top]=i;
if(!dfn[to]){
dfs(to);
low[u]=min(low[u],low[to]);
if(dfn[u]<=low[to]){
subnet[u]++;
iscut[u]=1;
btot++;
do{
int now=st[top--];
belong[edge[now].u].push_back(btot);
belong[edge[now].to].push_back(btot);
bian[edge[now].id]=btot;
to=edge[now].u;
}while(to!=u);
}
}
else
low[u]=min(low[u],low[to]);
}
} int B[maxn<<2],F[maxn<<2],d[maxn<<2][20],pos[maxn<<2],tot,dep[maxn<<1];
bool treecut[maxn<<1];
void RMQ1(int n){
for(int i=1;i<=n;i++)d[i][0]=B[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+j-1<=n;i++)
d[i][j]=min(d[i][j-1],d[i + (1<<(j-1))][j-1]);
} int RMQ(int L,int R){
int k=0;
while((1<<(k+1))<=R-L+1) k++;
return min(d[L][k],d[R-(1<<k)+1][k] );
} int lca(int a,int b){
if(pos[a] > pos[b])swap(a,b);
int ans=RMQ(pos[a],pos[b]);
return F[ans];
} //写了个RMQ求LCA
void DFS(int u){
dfn[u]=++time;
B[++tot]=dfn[u];
F[time]=u;
pos[u]=tot;
for(int i=head[u];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
if(treecut[u])
dep[to]=dep[u] + 1;
else
dep[to]=dep[u];
DFS(to);
B[++tot]=dfn[u];
}
}
} void solve(int n){
for(int i=0;i<=n;i++) {
dfn[i]=0;
} time=tot=0;
for(int i=1;i<=n;i++)
if(!dfn[i]){
dep[i]=0;
DFS(i);
}
RMQ1(tot);
int m,u,to;
scanf("%d",&m);
while(m--){
scanf("%d%d",&u,&to);
u=bian[u];to=bian[to];
if(u<0||to<0){
printf("0\n");continue;
}
int LCA=lca(u,to);
if(u==LCA)
printf("%d\n",dep[to]-dep[u]-treecut[u]);
else if(to == LCA)
printf("%d\n",dep[u]-dep[to]-treecut[to]);
else
printf("%d\n",dep[u]+dep[to]-2*dep[LCA]-treecut[LCA]);
}
} int main(){
int n,m,u,to;
while(scanf("%d%d",&n,&m)!=-1 && n){
init(n);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&to);
edge[cnt].id=i;
add(u,to);
edge[cnt].id=i;
add(to,u);
} for(int i=1;i<=n;i++)
if(!dfn[i]){
dfs(i);
subnet[i]--;
if(subnet[i]<=0)iscut[i]=0;
} int ditot=btot;
for(int i=1;i<=btot;i++)
treecut[i]=0;
for(int i=1;i<=btot+n;i++)
head[i]=-1;
cnt=0;
for(int i=1;i<=n;i++)
if(iscut[i]){
sort(belong[i].begin(),belong[i].end());
ditot++;
treecut[ditot]=1;
add(belong[i][0],ditot);
add(ditot,belong[i][0]);
for(int j=1;j<belong[i].size();j++)
if(belong[i][j]!=belong[i][j-1]){
add(belong[i][j],ditot);
add(ditot,belong[i][j]);
}
}
solve(ditot);
}
return 0;
}

【Targan+LCA】HDU 3686 Traffic Real Time Query的更多相关文章

  1. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  2. hdu 3686 Traffic Real Time Query System 点双两通分量 + LCA。这题有重边!!!

    http://acm.hdu.edu.cn/showproblem.php?pid=3686 我要把这题记录下来. 一直wa. 自己生成数据都是AC的.现在还是wa.留坑. 我感觉我现在倒下去床上就能 ...

  3. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  4. HDU 3686 Traffic Real Time Query System(点双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向图,\(q\) 次询问,每次询问两边之间的必经之点个数. 思路 ​ 求两点之间必经之边的个数用的是边双缩点,再求树上距离.而对比边双和点双之 ...

  5. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  6. 【线段树】HDU 5493 Queue (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5493 题目大意: N个人,每个人有一个唯一的高度h,还有一个排名r,表示它前面或后面比它高的人的个数 ...

  7. 【归并排序】【逆序数】HDU 5775 Bubble Sort

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 题目大意: 冒泡排序的规则如下,一开始给定1~n的一个排列,求每个数字在排序过程中出现的最远端 ...

  8. 【线段树】HDU 5443 The Water Problem

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 题目大意: T组数据.n个值,m个询问,求区间l到r里的最大值.(n,m<=1000) ...

  9. 【刷题】HDU 2222 Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

随机推荐

  1. [PyTorch 学习笔记] 6.2 Normalization

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.py https: ...

  2. 使用 Promise 实现任务队列发送请求,实现最大请求数目限制

    核心 设置最大请求数量,当前请求数量,待执行队列 调用时,创建一个新任务,然后判断是否达到最大请求数量,若达到则将任务追加到待执行队列,否则,则直接执行该任务.并返回Promise 创建任务时,需要返 ...

  3. Odoo10中calendar视图点击事件

    有个需求,需要根据该条记录的状态字段来控制点击calendar时是否需要打开form视图,解决方案如下:重写了web_calendar的get_fc_init_options()方法中的eventCl ...

  4. 论文:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结

    Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结 笔记不能简单的抄写文中 ...

  5. 乔悟空-CTF-i春秋-Misc-爆破3

    hehe,第一次用这个,开始CTF刷题之旅 2020.09.02 题目地址 学习 题目分析 下边是题目给的php源码,意思就是进行源码审计,分析出能输出flag的条件. 这东西我是真小白,so,积累经 ...

  6. C语言汇总2

    (10-15) 注释:1.单行注释可以嵌套单行注释 eg .//lalalal//lalalal(/后面都是注释完的) 2.多行注释可以嵌套单行注释 (两个**之间的都是注释的) 3.单行注释可以嵌套 ...

  7. 使用VSCode和CMake构建跨平台的C/C++开发环境

    日前在学习制作LearnOpenGL教程的实战项目Breakout游戏时,希望能将这个小游戏开发成跨平台的,支持在多个平台运行.工欲善其事必先利其器,首先需要做的自然是搭建一个舒服的跨平台C/C++开 ...

  8. 【原创】一层Nginx反向代理K8S化部署实践

    目录: 1)背景介绍 2)方案分析 3)实现细节 4)监控告警 5)日志收集 6)测试 一.背景介绍     如下图所示,传统方式部署一层Nginx,随着业务扩大,维护管理变得复杂,繁琐,耗时耗力和易 ...

  9. C++解析XML的通用库

    工作中,经常和XML打交道,最近抽空实现了一个通用解析XML的库,已归档在GitHub,详情点击:ComXmlLib.如果您无法访问GitHub,点击此处下载(链接是初版,无法和GitHub同步,如需 ...

  10. 优酷kux转mp4

    利用YouKu客户端下载的视频格式为kux,只能通过YouKu客户端播放,很不方便.在网上看到有人通过ffmpeg解码器进行转换,写成了批处理,如下: @echo off setlocal enabl ...