题目内容

洛谷链接

给出一个\(n\)个节点,\(m\)条边的无向图和两个节点\(s\)和\(t\),问这两个节点的路径中有几个点必须经过。

输入格式

第一行是\(n\)和\(m\)。

接下来\(m\)行,给出两个数表示这两个节点之间存在一条边。

接下来一行一个整数\(Q\),表示询问个数。

接下来\(Q\)行,每行两个整数\(s\)和\(t\)(\(s\not= t\))。

数据范围

\(0<n\le 10000,0<m\le 100000,0<Q\le 10000,0<s,t\le m\)

输出格式

对于每个询问,输出一行表示答案

样例输入

5 6

1 2

1 3

2 3

3 4

4 5

3 5

2

2 3

2 4

0 0

样例输出

0

1

思路

这个题问的就是\(s\)到\(t\)路径上割点的个数。

点双缩点,可以知道,每条边仅在一个联通块中,把割点和它相邻的联通块建边,从而构造棵树。

询问\(s\)边和\(t\)边,需要求它们分别属于哪个连通块。所以问题转化成了一棵树中,有些点已标记为割点,询问两个非割点之间路径上有多少个割点。

因此选择一个点作为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA即可。

代码

#include<cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=10000+10;
const int maxm=100000+10; struct Edge{
int u,to,next,vis,id;
}edge[maxm<<1]; int head[maxn<<1],dfn[maxn<<1],low[maxn],st[maxm],iscut[maxn],subnet[maxn],bian[maxm];
int cnt,time,top,btot;
vector<int> belong[maxn]; void add(int u,int to){
edge[cnt].u=u;
edge[cnt].to=to;
edge[cnt].next=head[u];
edge[cnt].vis=0;
head[u]=cnt++;
} void init(int n){
for(int i=0;i<=n;i++){
head[i]=-1;
dfn[i]=iscut[i]=subnet[i]=0;
belong[i].clear();
}
cnt=time=top=btot=0;
} void dfs(int u){
dfn[u]=low[u]=++time;
for(int i=head[u];i!=-1;i=edge[i].next){
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
int to=edge[i].to;
st[++top]=i;
if(!dfn[to]){
dfs(to);
low[u]=min(low[u],low[to]);
if(dfn[u]<=low[to]){
subnet[u]++;
iscut[u]=1;
btot++;
do{
int now=st[top--];
belong[edge[now].u].push_back(btot);
belong[edge[now].to].push_back(btot);
bian[edge[now].id]=btot;
to=edge[now].u;
}while(to!=u);
}
}
else
low[u]=min(low[u],low[to]);
}
} int B[maxn<<2],F[maxn<<2],d[maxn<<2][20],pos[maxn<<2],tot,dep[maxn<<1];
bool treecut[maxn<<1];
void RMQ1(int n){
for(int i=1;i<=n;i++)d[i][0]=B[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+j-1<=n;i++)
d[i][j]=min(d[i][j-1],d[i + (1<<(j-1))][j-1]);
} int RMQ(int L,int R){
int k=0;
while((1<<(k+1))<=R-L+1) k++;
return min(d[L][k],d[R-(1<<k)+1][k] );
} int lca(int a,int b){
if(pos[a] > pos[b])swap(a,b);
int ans=RMQ(pos[a],pos[b]);
return F[ans];
} //写了个RMQ求LCA
void DFS(int u){
dfn[u]=++time;
B[++tot]=dfn[u];
F[time]=u;
pos[u]=tot;
for(int i=head[u];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
if(treecut[u])
dep[to]=dep[u] + 1;
else
dep[to]=dep[u];
DFS(to);
B[++tot]=dfn[u];
}
}
} void solve(int n){
for(int i=0;i<=n;i++) {
dfn[i]=0;
} time=tot=0;
for(int i=1;i<=n;i++)
if(!dfn[i]){
dep[i]=0;
DFS(i);
}
RMQ1(tot);
int m,u,to;
scanf("%d",&m);
while(m--){
scanf("%d%d",&u,&to);
u=bian[u];to=bian[to];
if(u<0||to<0){
printf("0\n");continue;
}
int LCA=lca(u,to);
if(u==LCA)
printf("%d\n",dep[to]-dep[u]-treecut[u]);
else if(to == LCA)
printf("%d\n",dep[u]-dep[to]-treecut[to]);
else
printf("%d\n",dep[u]+dep[to]-2*dep[LCA]-treecut[LCA]);
}
} int main(){
int n,m,u,to;
while(scanf("%d%d",&n,&m)!=-1 && n){
init(n);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&to);
edge[cnt].id=i;
add(u,to);
edge[cnt].id=i;
add(to,u);
} for(int i=1;i<=n;i++)
if(!dfn[i]){
dfs(i);
subnet[i]--;
if(subnet[i]<=0)iscut[i]=0;
} int ditot=btot;
for(int i=1;i<=btot;i++)
treecut[i]=0;
for(int i=1;i<=btot+n;i++)
head[i]=-1;
cnt=0;
for(int i=1;i<=n;i++)
if(iscut[i]){
sort(belong[i].begin(),belong[i].end());
ditot++;
treecut[ditot]=1;
add(belong[i][0],ditot);
add(ditot,belong[i][0]);
for(int j=1;j<belong[i].size();j++)
if(belong[i][j]!=belong[i][j-1]){
add(belong[i][j],ditot);
add(ditot,belong[i][j]);
}
}
solve(ditot);
}
return 0;
}

【Targan+LCA】HDU 3686 Traffic Real Time Query的更多相关文章

  1. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  2. hdu 3686 Traffic Real Time Query System 点双两通分量 + LCA。这题有重边!!!

    http://acm.hdu.edu.cn/showproblem.php?pid=3686 我要把这题记录下来. 一直wa. 自己生成数据都是AC的.现在还是wa.留坑. 我感觉我现在倒下去床上就能 ...

  3. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  4. HDU 3686 Traffic Real Time Query System(点双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向图,\(q\) 次询问,每次询问两边之间的必经之点个数. 思路 ​ 求两点之间必经之边的个数用的是边双缩点,再求树上距离.而对比边双和点双之 ...

  5. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  6. 【线段树】HDU 5493 Queue (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5493 题目大意: N个人,每个人有一个唯一的高度h,还有一个排名r,表示它前面或后面比它高的人的个数 ...

  7. 【归并排序】【逆序数】HDU 5775 Bubble Sort

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 题目大意: 冒泡排序的规则如下,一开始给定1~n的一个排列,求每个数字在排序过程中出现的最远端 ...

  8. 【线段树】HDU 5443 The Water Problem

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 题目大意: T组数据.n个值,m个询问,求区间l到r里的最大值.(n,m<=1000) ...

  9. 【刷题】HDU 2222 Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

随机推荐

  1. 提交并发量的方法:Java GC tuning :Garbage collector

    三色算法,高效率垃圾回收,jvm调优 Garbage collector:垃圾回收器 What garbage? 没有任何引用指向它的对象 JVM GC回收算法: 引用计数法(ReferenceCou ...

  2. Docker 学习笔记一

    Docker 学习笔记一 1.Docker是什么?         Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源.让开发者打包他们的应用以及依赖包到一 ...

  3. docker下部署jira破解版

    1. 制作Docker破解容器 在/opt/jira下新建一个Dockerfile文件 touch Dockerfile 编辑Dockerfile文件 vim Dockerfile FROM cpta ...

  4. 什么是 Catalan 数列以及其应用

    引言 在开始论述之前,我想请大家先看下这几个问题: 有 \(2n\) 个人排成一行进入剧场.入场费 5 元.其中只有 \(n\) 个人有一张 5 元钞票,另外 \(n\) 人只有 10 元钞票,剧院无 ...

  5. 中科蓝讯530X、532X模块之硬件UART

    文章转载请注明来源 作者:Zeroer 一.选择IO 想要使用硬件的UART必须先确定要mapping的pin脚 注意:用作TX的脚位可以分时复用成单线双工 因为芯片默认的调试串口用的是UART0,所 ...

  6. 微信小程序问题汇总

    一.消息推送配置 1.解析失败.请检查信息是否填写正确 服务器地址中不能使用其他的端口号,把端口号去掉,默认就是走80或443端口,另外这个地址需要外网访问,我使用了nat123映射了80端口,这个工 ...

  7. 白话ansible-runner--1.环境搭建

    最近在Windows10上的项目需要使用到ansible API调用,参考 本末大神 推荐ansible API用官网封装的ansible-runner开发比较友好,ansible-runner是an ...

  8. el-table行点击事件row-click与列按钮事件冲突

    需求简述 表格用el-table实现,操作列的编辑按钮点击事件正常实现.现要为行加一点击事件,即row-click.加上后,发现点击操作列的编辑按钮时,会触发按钮本身事件,同时会触发行点击事件.第一版 ...

  9. vsCode 搭建Java开发环境

    1.安装扩展 Java Extension Pack Spring Boot Extension Pack 2.配置Maven 打开设置 搜索maven 找到并打开  在 settings.json ...

  10. 极简 Node.js 入门 - 4.3 可读流

    极简 Node.js 入门系列教程:https://www.yuque.com/sunluyong/node 本文更佳阅读体验:https://www.yuque.com/sunluyong/node ...