题目内容

洛谷链接

给出一个\(n\)个节点,\(m\)条边的无向图和两个节点\(s\)和\(t\),问这两个节点的路径中有几个点必须经过。

输入格式

第一行是\(n\)和\(m\)。

接下来\(m\)行,给出两个数表示这两个节点之间存在一条边。

接下来一行一个整数\(Q\),表示询问个数。

接下来\(Q\)行,每行两个整数\(s\)和\(t\)(\(s\not= t\))。

数据范围

\(0<n\le 10000,0<m\le 100000,0<Q\le 10000,0<s,t\le m\)

输出格式

对于每个询问,输出一行表示答案

样例输入

5 6

1 2

1 3

2 3

3 4

4 5

3 5

2

2 3

2 4

0 0

样例输出

0

1

思路

这个题问的就是\(s\)到\(t\)路径上割点的个数。

点双缩点,可以知道,每条边仅在一个联通块中,把割点和它相邻的联通块建边,从而构造棵树。

询问\(s\)边和\(t\)边,需要求它们分别属于哪个连通块。所以问题转化成了一棵树中,有些点已标记为割点,询问两个非割点之间路径上有多少个割点。

因此选择一个点作为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA即可。

代码

#include<cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=10000+10;
const int maxm=100000+10; struct Edge{
int u,to,next,vis,id;
}edge[maxm<<1]; int head[maxn<<1],dfn[maxn<<1],low[maxn],st[maxm],iscut[maxn],subnet[maxn],bian[maxm];
int cnt,time,top,btot;
vector<int> belong[maxn]; void add(int u,int to){
edge[cnt].u=u;
edge[cnt].to=to;
edge[cnt].next=head[u];
edge[cnt].vis=0;
head[u]=cnt++;
} void init(int n){
for(int i=0;i<=n;i++){
head[i]=-1;
dfn[i]=iscut[i]=subnet[i]=0;
belong[i].clear();
}
cnt=time=top=btot=0;
} void dfs(int u){
dfn[u]=low[u]=++time;
for(int i=head[u];i!=-1;i=edge[i].next){
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
int to=edge[i].to;
st[++top]=i;
if(!dfn[to]){
dfs(to);
low[u]=min(low[u],low[to]);
if(dfn[u]<=low[to]){
subnet[u]++;
iscut[u]=1;
btot++;
do{
int now=st[top--];
belong[edge[now].u].push_back(btot);
belong[edge[now].to].push_back(btot);
bian[edge[now].id]=btot;
to=edge[now].u;
}while(to!=u);
}
}
else
low[u]=min(low[u],low[to]);
}
} int B[maxn<<2],F[maxn<<2],d[maxn<<2][20],pos[maxn<<2],tot,dep[maxn<<1];
bool treecut[maxn<<1];
void RMQ1(int n){
for(int i=1;i<=n;i++)d[i][0]=B[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+j-1<=n;i++)
d[i][j]=min(d[i][j-1],d[i + (1<<(j-1))][j-1]);
} int RMQ(int L,int R){
int k=0;
while((1<<(k+1))<=R-L+1) k++;
return min(d[L][k],d[R-(1<<k)+1][k] );
} int lca(int a,int b){
if(pos[a] > pos[b])swap(a,b);
int ans=RMQ(pos[a],pos[b]);
return F[ans];
} //写了个RMQ求LCA
void DFS(int u){
dfn[u]=++time;
B[++tot]=dfn[u];
F[time]=u;
pos[u]=tot;
for(int i=head[u];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
if(treecut[u])
dep[to]=dep[u] + 1;
else
dep[to]=dep[u];
DFS(to);
B[++tot]=dfn[u];
}
}
} void solve(int n){
for(int i=0;i<=n;i++) {
dfn[i]=0;
} time=tot=0;
for(int i=1;i<=n;i++)
if(!dfn[i]){
dep[i]=0;
DFS(i);
}
RMQ1(tot);
int m,u,to;
scanf("%d",&m);
while(m--){
scanf("%d%d",&u,&to);
u=bian[u];to=bian[to];
if(u<0||to<0){
printf("0\n");continue;
}
int LCA=lca(u,to);
if(u==LCA)
printf("%d\n",dep[to]-dep[u]-treecut[u]);
else if(to == LCA)
printf("%d\n",dep[u]-dep[to]-treecut[to]);
else
printf("%d\n",dep[u]+dep[to]-2*dep[LCA]-treecut[LCA]);
}
} int main(){
int n,m,u,to;
while(scanf("%d%d",&n,&m)!=-1 && n){
init(n);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&to);
edge[cnt].id=i;
add(u,to);
edge[cnt].id=i;
add(to,u);
} for(int i=1;i<=n;i++)
if(!dfn[i]){
dfs(i);
subnet[i]--;
if(subnet[i]<=0)iscut[i]=0;
} int ditot=btot;
for(int i=1;i<=btot;i++)
treecut[i]=0;
for(int i=1;i<=btot+n;i++)
head[i]=-1;
cnt=0;
for(int i=1;i<=n;i++)
if(iscut[i]){
sort(belong[i].begin(),belong[i].end());
ditot++;
treecut[ditot]=1;
add(belong[i][0],ditot);
add(ditot,belong[i][0]);
for(int j=1;j<belong[i].size();j++)
if(belong[i][j]!=belong[i][j-1]){
add(belong[i][j],ditot);
add(ditot,belong[i][j]);
}
}
solve(ditot);
}
return 0;
}

【Targan+LCA】HDU 3686 Traffic Real Time Query的更多相关文章

  1. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  2. hdu 3686 Traffic Real Time Query System 点双两通分量 + LCA。这题有重边!!!

    http://acm.hdu.edu.cn/showproblem.php?pid=3686 我要把这题记录下来. 一直wa. 自己生成数据都是AC的.现在还是wa.留坑. 我感觉我现在倒下去床上就能 ...

  3. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  4. HDU 3686 Traffic Real Time Query System(点双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向图,\(q\) 次询问,每次询问两边之间的必经之点个数. 思路 ​ 求两点之间必经之边的个数用的是边双缩点,再求树上距离.而对比边双和点双之 ...

  5. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  6. 【线段树】HDU 5493 Queue (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5493 题目大意: N个人,每个人有一个唯一的高度h,还有一个排名r,表示它前面或后面比它高的人的个数 ...

  7. 【归并排序】【逆序数】HDU 5775 Bubble Sort

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 题目大意: 冒泡排序的规则如下,一开始给定1~n的一个排列,求每个数字在排序过程中出现的最远端 ...

  8. 【线段树】HDU 5443 The Water Problem

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 题目大意: T组数据.n个值,m个询问,求区间l到r里的最大值.(n,m<=1000) ...

  9. 【刷题】HDU 2222 Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

随机推荐

  1. VSCode注册关联自定义类型文件

    打开你要注册的文件类型文件[本文中用 ".txt"到".lua"演示] 在VSCode窗口右下角有当前文件类型"Plain Text" 是可 ...

  2. 【翻译】.NET 5 RC1发布

    9月14日,.NET5发布了(Release Candidate)RC1版本,RC的意思是指我们可以进行使用,并且RC版本得到了支持,该版本是.NET5.0的最终版本,也是11月正式版本之前两个RC版 ...

  3. [LeetCode]695. 岛屿的最大面积(DFS/BFS)、200. 岛屿数量(DFS/BFS待做/并差集待做)

    695. 岛屿的最大面积 题目 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二维矩阵的四个边缘都被 ...

  4. JVM初认识

    运行时数据区域 程序计数器:程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节 ...

  5. java 多线程-3

    十.同步机制解决Thread继承安全问题 创建三个窗口买票,共100张票.用继承来实现 方式一:同步代码块 public class RunMainExtends { public static vo ...

  6. 常用的CSS命名规范大总结

    转载: http://www.php.cn/toutiao-417563.html 文本命名规范 index.css: 一般用于首页建立样式 head.css: 头部样式,当多个页面头部设计风格相同时 ...

  7. 使用VSCode和CMake构建跨平台的C/C++开发环境

    日前在学习制作LearnOpenGL教程的实战项目Breakout游戏时,希望能将这个小游戏开发成跨平台的,支持在多个平台运行.工欲善其事必先利其器,首先需要做的自然是搭建一个舒服的跨平台C/C++开 ...

  8. Linux基本目录机构

    Linux基本目录机构 1. 基本介绍 Linux的文件系统采用级层式子的树状目录结构 最上层是根目录"/" Linux世界里,一切皆文件 2. 目录用途 /bin: 是Binar ...

  9. 自定义带边框TextView--边框粗细不一的问题

    自定义带边框TextView 给textview加边框 最low的做法.textview外层套一层布局,然后给布局加边框样式(这么弱的做法,不能这么干) 自定义控件 canvas.drawLines ...

  10. 适配器(adapter)与fragment之间、fragment与activity之间的通信问题

    一.适配器(adapter)与fragment之间通信 通过本地广播进行通信 步骤如下 在adapter中代码 声明本地广播管理 private LocalBroadcastManager local ...