最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法
在NOIP比赛中,如果出图论题最短路径应该是个常考点。
求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分)
dijkstra算法 (堆优化之后是O(MlogE),再加些玄学优化一般就是正解了,100分做法)
SPFA算法 ( 个人是不建议学习的,在NOIP提高组中出题人是故卡SPFA,它的复杂度是不确定的,它是基于ballman-Fold算法(O(N*E))的队列优化版)
这个应该都是比较简单的,直接上代码吧
dijkstra
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define MAXN 500010
using namespace std;
int cnt,n,m,s;
int head[MAXN];
int d[MAXN]; struct Edge{
int s,t,w,next;
}edge[500010]; void add(int u,int v,int wi){
cnt++;
edge[cnt].s=u;
edge[cnt].t=v;
edge[cnt].w=wi;
edge[cnt].next=head[u];
head[u]=cnt;
} struct HeapNode{
int pos,dis;
bool operator < ( const HeapNode &a )const {
return a.dis<dis;
}
}; void dijkstra(){
priority_queue <HeapNode> Q;
for(int i=1;i<=n;i++) d[i]=2147483647;
d[s]=0;
Q.push((HeapNode){s,0});
while(!Q.empty()){
while(Q.size() > 1 && Q.top().dis != d[Q.top().pos]) Q.pop();
HeapNode tmp=Q.top();
Q.pop();
int u=tmp.pos;
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].t;
int wi=edge[i].w;
if(d[v]>d[u]+wi){
d[v]=d[u]+wi,
Q.push((HeapNode) {v,d[v]});
}
}
} } int main(){ scanf("%d%d%d",&n,&m,&s);
for(int i=1;i<=m;i++){
int x,y,z; scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
dijkstra();
for(int i=1;i<=n;i++){
printf("%d ",d[i]);
} return 0;
}
SPFA
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=10010;
int cnt,n,m,s;
int head[MAXN];
int d[MAXN];
int b[MAXN];
struct Edge{
int s,t,w,next;
}edge[500010]; void add(int u,int v,int wi){
cnt++;
edge[cnt].s=u;
edge[cnt].t=v;
edge[cnt].w=wi;
edge[cnt].next=head[u];
head[u]=cnt; } void spfa(){
queue<int>q;
for(int i=1;i<=n;i++){
d[i]=2147483647;
b[i]=0;
}
q.push(s);d[s]=0;b[s]=1;
while(!q.empty()){
int u=q.front();
q.pop();
b[u]=0;
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].t;
if(d[v]>d[u]+edge[i].w){
d[v]=d[u]+edge[i].w;
if(b[v]==0){
b[v]=1;
q.push(v);
}
}
}
}
}
int main(){ scanf("%d%d%d",&n,&m,&s);
for(int i=1;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
spfa();
for(int i=1;i<=n;i++){
printf("%d ",d[i]);
}
return 0;
}
最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法的更多相关文章
- Bellman-Ford算法的改进---SPFA算法
传送门: Dijkstra Bellman-Ford SPFA Floyd 1.算法思想 Bellman-Ford算法时间复杂度比较高,在于Bellman-Ford需要递推n次,每次递推需要扫描所有的 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- 【uva 658】It's not a Bug, it's a Feature!(图论--Dijkstra或spfa算法+二进制表示+类“隐式图搜索”)
题意:有N个潜在的bug和m个补丁,每个补丁用长为N的字符串表示.首先输入bug数目以及补丁数目.然后就是对M个补丁的描述,共有M行.每行首先是一个整数,表明打该补丁所需要的时间.然后是两个字符串,第 ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- 最短路-SPFA算法&Floyd算法
SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...
- java实现SPFA算法
1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其 ...
- 10行实现最短路算法——Dijkstra
今天是算法数据结构专题的第34篇文章,我们来继续聊聊最短路算法. 在上一篇文章当中我们讲解了bellman-ford算法和spfa算法,其中spfa算法是我个人比较常用的算法,比赛当中几乎没有用过其他 ...
- Bellman-Ford算法与SPFA算法详解
PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...
- 使用spfa算法判断有没有负环
如果存在最短路径的边数大于等于点数,就有负环 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你判断图中是否存在负权回路. 输入格式 第一行包含整数n和m. 接下来m行每行 ...
随机推荐
- linux安装ftp步骤
1,查看是否安装了FTP:rpm -qa |grep vsftpd 2,如果没有安装,可以使用如下命令直接安装 yum -y install vsftpd 默认安装目录:/etc/vsftpd 3,添 ...
- Linux下安装svn教程
前言 最近买了新服务器,准备开始弄一些个人的开源项目.有了服务器当然是搞一波svn啦.方便自己的资料上传和下载.于是在此记录搭建svn的方式,方便以后直接使用. 安装 使用yum源进行安装,十分的方便 ...
- Java 并发编程要点
使用线程 有三种使用线程的方法: 实现 Runnable 接口: 实现 Callable 接口: 继承 Thread 类. 实现 Runnable 和 Callable 接口的类只能当做一个可以在线程 ...
- Pycharm同时执行多个脚本文件
Pycharm同时执行多个脚本文件 设置Pycharm使它可以同时执行多个程序 打开Pycharm 找到Run,点击确认 点击Edit Configurations 右上角Allow parallel ...
- Nacos(二)源码分析Nacos服务端注册示例流程
上回我们讲解了客户端配置好nacos后,是如何进行注册到服务器的,那我们今天来讲解一下服务器端接收到注册实例请求后会做怎么样的处理. 首先还是把博主画的源码分析图例发一下,让大家对整个流程有一个大概的 ...
- 【MySQL】ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing
今天上午遇到了一个问题,新创建的mysql5.7的数据库,由于初始化有点问题,没有给root密码,用了免密码登录. 但是,修改了root密码之后,把配置中的免密登录的配置注释掉后,重启服务.服务正常启 ...
- 未使用绑定变量对share_pool的影响
oracle SGA中包含数据高速缓冲,重做日志缓冲,以及共享池(share_pool).共享池中包含库高速缓冲(所有的SQL,执行计划等)和数据字典缓冲(对象的定义,权限等). 所以,如果SQL中没 ...
- oracle rac切换到单实例DG后OGG的处理
在RAC切换到单实例DG后,将OGG目录复制过去,在使用alter extract ext_name,begin now的时候报错 2016-04-10 11:27:03 WARNING OGG-01 ...
- MYSQL面试题-索引
MYSQL面试题-索引 引自B站up编程不良人:https://www.bilibili.com/video/BV19y4y127h4 一.什么是索引? 官方定义:索引是一种帮助mysql提高查询效率 ...
- 研发过程及工具支撑 DevOps 工具链集成
https://mp.weixin.qq.com/s/NYm63nkCymIV3DbL4O01dg 腾讯重新定义敏捷 |Q推荐 小智 InfoQ 2020-09-03 敏捷开发奠基人 Robert C ...