目的:

通过Spout发射kafka的数据,到bolt统计每一个单词的个数,将这些记录更新到mongodb中。

Spout的nextTuple方法会一直处于一个while循环这中,每一条数据发送给bolt后,bolt都会调用一次execute方法。

spout用于发射数据,bolt用于对数据进行处理。

MongoUtil:mongo工具类

package storm;

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;

public class MongoUtil {
private MongoUtil(){}
private static MongoClient mongo;
private static DB db;
private static DBCollection collection;
static{
mongo = new MongoClient("192.168.170.185",27017);
db = mongo.getDB("mySpout");
collection = db.getCollection("myBolt");
}
public static Long getCount(){
return collection.count(new BasicDBObject("_id",1L));
}
public static void insert(String substring){
DBObject obj = new BasicDBObject();
obj.put("_id", 1);
obj.put("bolt", substring);
collection.insert(obj);
}
public static void update(String substring){
DBObject obj = new BasicDBObject();
obj.put("_id", 1);
DBObject obj2 = collection.findOne(obj);
obj2.put("bolt", substring);
collection.update(obj, obj2);
}

}

SentenceSpout:发射数据的spout,从kafka读取数据。

package storm;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import org.apache.kafka.common.utils.Utils;
import org.apache.storm.Constants;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;

import kafka.KafkaConsumer;
import kafka.KafkaProducer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;

public class SentenceSpout extends BaseRichSpout{
private SpoutOutputCollector collector;
private int index = 0;
private ConsumerConnector consumer;
private Map conf;
@Override
public void open(Map map, TopologyContext context, SpoutOutputCollector collector) {//尽量将初始化写在open方法中,否则可能会报错。
this.conf = map;
this.collector = collector;
Properties props = new Properties();

// zookeeper 配置 
props.put("zookeeper.connect", "192.168.170.185:2181");

// 消费者所在组 
props.put("group.id", "testgroup");

// zk连接超时 
props.put("zookeeper.session.timeout.ms", "4000"); 
props.put("zookeeper.sync.time.ms", "200"); 
props.put("auto.commit.interval.ms", "1000"); 
props.put("auto.offset.reset", "smallest");

// 序列化类 
props.put("serializer.class", "kafka.serializer.StringEncoder");

ConsumerConfig config = new ConsumerConfig(props);

this.consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config); 
}
@Override
public void nextTuple() {

Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); 
topicCountMap.put("helloworld", new Integer(1));

StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties()); 
StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties()); 
Map<String, List<KafkaStream<String, String>>> consumerMap = 
consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder); 
KafkaStream<String, String> stream = consumerMap.get("helloworld").get(0); 
ConsumerIterator<String, String> it = stream.iterator();

int messageCount = 0; 
while (it.hasNext()){ 
this.collector.emit(new Values(it.next().message().toString()));

// index = (index+1>=sentences.length)?0:index+1;
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));
}

}
SplitSentenceBolt:切割单词bolt

package storm;

import java.util.Map;

import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

public class SplitSentenceBolt extends BaseRichBolt{
private OutputCollector collector;
private Map stormConf; 
@Override
public void prepare(Map map, TopologyContext context, OutputCollector collector) {
this.stormConf = map;
this.collector = collector;
}

@Override
public void execute(Tuple tuple) {
String str = tuple.getStringByField("sentence");
String[] split = str.split(" ");
for(String word : split){
this.collector.emit(new Values(word));
}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}

}

WordCountBolt:计数的bolt

package storm;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.HashMap;
import java.util.Map;

import org.apache.storm.Config;
import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

public class WordCountBolt extends BaseRichBolt{
private Map boltconf;
private OutputCollector collector;
private HashMap<String,Long> counts = null;
@Override
public void prepare(Map map, TopologyContext context, OutputCollector collector) {
this.boltconf = map;
this.collector=collector;
this.counts = new HashMap<String,Long>();
}

@Override
public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
this.counts.put(word, this.counts.containsKey(word)?this.counts.get(word)+1:1);
this.collector.emit(new Values(word,counts.get(word)));
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word","count"));
}

}

ReportBolt:打印记录结果,并将结果插入mongodb中bolt

package storm;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.storm.Config;
import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple;

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;

public class ReportBolt extends BaseRichBolt{
private HashMap<String,Long> counts = null;
private Map boltconf;
private StringBuffer buf = null;
@Override
public void prepare(Map arg0, TopologyContext arg1, OutputCollector arg2) {
this.boltconf = arg0;
this.counts=new HashMap<String,Long>();
this.buf = new StringBuffer();
}

@Override
public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long counts = tuple.getLongByField("count");
this.counts.put(word, counts);
System.out.println("------统计结果------");
List<String> keys = new ArrayList<String>();
keys.addAll(this.counts.keySet());

buf.append("{");
for(String key : keys){

buf.append(key+":"+this.counts.get(key)).append(",");
System.out.println(key + " : " +this.counts.get(key));
}
System.out.println("------------------");
buf.append("}");
String substring = buf.delete(buf.length()-2, buf.length()-1).toString();

long count = MongoUtil.getCount();
if(count<=0){
MongoUtil.insert(substring);
}else{
MongoUtil.update(substring);
}
buf = buf.delete(0, buf.length());
}
@Override
public void declareOutputFields(OutputFieldsDeclarer arg0) {
// TODO Auto-generated method stub
}
/* @Override
public Map<String, Object> getComponentConfiguration() {
HashMap<String, Object> hashMap = new HashMap<String, Object>();
hashMap.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 10);
return hashMap;
}*/
}

WordCountTopology: topology,storm零件的组装

package storm;

import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;

public class WordCountTopology {
private static final String SENTENCE_SPOUT_ID = "sentence-spout";
private static final String SPLIT_BOLT_ID = "split-bolt";
private static final String COUNT_BOLT_ID = "count-bolt";
private static final String REPORT_BOLT_ID = "report-bolt";
private static final String TOPOLOGY_NAME = "word-count-topology";

public static void main(String[] args) throws Exception {

//--实例化Spout和Bolt
SentenceSpout spout = new SentenceSpout();
SplitSentenceBolt splitBolt = new SplitSentenceBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();
//--创建TopologyBuilder类实例
TopologyBuilder builder = new TopologyBuilder();

//--注册SentenceSpout
builder.setSpout(SENTENCE_SPOUT_ID, spout);
//--注册SplitSentenceBolt,订阅SentenceSpout发送的tuple
//此处使用了shuffleGrouping方法,此方法指定所有的tuple随机均匀的分发给SplitSentenceBolt的实例。
builder.setBolt(SPLIT_BOLT_ID, splitBolt).shuffleGrouping(SENTENCE_SPOUT_ID);
//--注册WordCountBolt,,订阅SplitSentenceBolt发送的tuple
//此处使用了filedsGrouping方法,此方法可以将指定名称的tuple路由到同一个WordCountBolt实例中
builder.setBolt(COUNT_BOLT_ID, countBolt).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
//--注册ReprotBolt,订阅WordCountBolt发送的tuple
//此处使用了globalGrouping方法,表示所有的tuple都路由到唯一的ReprotBolt实例中
builder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(COUNT_BOLT_ID);

//--创建配置对象
Config conf = new Config();

//--创建代表集群的对象,LocalCluster表示在本地开发环境来模拟一个完整的Storm集群
//本地模式是开发和测试的简单方式,省去了在分布式集群中反复部署的开销
//另外可以执行断点调试非常的便捷
LocalCluster cluster = new LocalCluster();

//--提交Topology给集群运行
cluster.submitTopology(TOPOLOGY_NAME, conf, builder.createTopology());

//--运行10秒钟后杀死Topology关闭集群
Thread.sleep(300000000);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
}
}

kafka-->storm-->mongodb的更多相关文章

  1. 简单测试flume+kafka+storm的集成

    集成 Flume/kafka/storm 是为了收集日志文件而引入的方法,最终将日志转到storm中进行分析.storm的分析方法见后面文章,这里只讨论集成方法. 以下为具体步骤及测试方法: 1.分别 ...

  2. Kafka+Storm+HDFS整合实践

    在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...

  3. Flume-ng+Kafka+storm的学习笔记

    Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...

  4. flume-ng+Kafka+Storm+HDFS 实时系统搭建

    转自:http://www.tuicool.com/articles/mMrQnu7 一 直以来都想接触Storm实时计算这块的东西,最近在群里看到上海一哥们罗宝写的Flume+Kafka+Storm ...

  5. [转]flume-ng+Kafka+Storm+HDFS 实时系统搭建

    http://blog.csdn.net/weijonathan/article/details/18301321 一直以来都想接触Storm实时计算这块的东西,最近在群里看到上海一哥们罗宝写的Flu ...

  6. Zookeeper+Kafka+Storm+HDFS实践

    Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. Hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来 ...

  7. [转载] Kafka+Storm+HDFS整合实践

    转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...

  8. Flume+Kafka+Storm+Hbase+HDSF+Poi整合

    Flume+Kafka+Storm+Hbase+HDSF+Poi整合 需求: 针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据. 举例:这个网站www.hongten.com(当 ...

  9. Flume+Kafka+Storm整合

    Flume+Kafka+Storm整合 1. 需求: 有一个客户端Client可以产生日志信息,我们需要通过Flume获取日志信息,再把该日志信息放入到Kafka的一个Topic:flume-to-k ...

  10. 大数据处理框架之Strom:Flume+Kafka+Storm整合

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

随机推荐

  1. Opencv— — Bias and Gain

    // define head function #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include < ...

  2. codevs 3027线段覆盖2

    传送门 3027 线段覆盖 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标, ...

  3. CSS:CSS 合法颜色值

    ylbtech-CSS:CSS 合法颜色值 1.返回顶部 1. CSS 颜色 可以用以下方法来规定 CSS 中的颜色: 十六进制色 RGB 颜色 RGBA 颜色 HSL 颜色 HSLA 颜色 预定义/ ...

  4. 八、子查询、limit及limit的分页

    1.子查询 定义:select语句中嵌套select语句被称为子查询 select子句可能出现在select.from.where关键字后面,如下: A.将一个表的查询结果当做是过滤条件 B.将一个表 ...

  5. CS231n 2016 通关 第四章-NN 作业

    cell 1 显示设置初始化 # A bit of setup import numpy as np import matplotlib.pyplot as plt from cs231n.class ...

  6. C#实现简易ajax调用后台方法

    在当前WEB当中,有些人都会抛弃asp.net的服务器控件,转而使用ajax来进行数据的交互和存储. 当我们大量使用ajax的时候,对于新手而言,肯定会创建很多的ashx或aspx页面,通过拼接参数, ...

  7. 如何在html中引入jsx文件

    不使用webpack工具做react项目 1.引入react相关js文件 <script src="https://cdn.staticfile.org/react/16.4.0/um ...

  8. Codeforces Round #375 (Div. 2)【A,B【模拟】,D【DFS】】

    PS_B:阿洗吧!B题卧槽数组开了250... PS_D:D题主要挂在了50*50口算得了250,数组开小,然后一开始还错了.= =哎,以后对于数据范围还是注意一点: 卧槽,这场可真二百五了... A ...

  9. Telnet 命令格式

    Telnet host 端口 如:Telnet 127.0.0.1 11211 执行命令进入后 ctr +] ,打开回显,并回车即可

  10. Unity 2D骨骼动画2:创建真实动画

    http://bbs.9ria.com/thread-401781-1-1.html 在这个系列,我们将关注Unity引擎提供的基于骨骼动画工具.它的主要思想是为了把它应用到你自己的游戏来介绍和教基本 ...