传送门

神仙……这题有毒……

一直在那里考虑没有逆元怎么办然后考虑解exgcd巴拉巴拉

最后只好看题解了

而且这题龟速乘都不行……得用代码里那种叫人半懂不懂的方式取模……

//minamoto
#include<bits/stdc++.h>
#define R register
#define int long long
#define ld long double
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int a,b,n,P,A,B,res;
int mul(R int x,R int y){
R int z=(ld)x*y/P;
R int res=x*y-z*P;
if(res<0)res+=P;
return res;
}
//int mul(int _a,int _b){
// int _c=(ld)(_a)*_b/P;
// int _ans=_a*_b-_c*P;
// if (_ans<0) _ans+=P;
// return _ans;
//}
int solve(int n){
if(n<=1)return n?(a+b)%P:1;
int res=solve(n>>1);
A=mul(A,A),B=mul(B,B);
if(n>>1&1)A=mul(A,a),B=mul(B,b);
return n&1?mul(mul(A,a)+mul(B,b),res):(mul(A+B,res)-mul(A,B)+P)%P;
}
signed main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--){
n=read(),a=read(),b=read(),P=read(),A=B=1;
print((solve(n)+P)%P);
}
return Ot(),0;
}

P5137 polynomial(分治)的更多相关文章

  1. [洛谷P5137]polynomial

    题目大意:求:$$\sum\limits_{i=0}^na^{n-i}b^i\pmod{p}$$$T(T\leqslant10^5)$组数据,$a,b,n,p\leqslant10^{18}​$ 题解 ...

  2. HDU 6900 Residual Polynomial【分治 NTT】

    HDU 6900 Residual Polynomial  题意: 给出一个多项式\(f_1(x) = \sum_{i=0}^na_ix^i\) 对于任意\(i>=2\),满足\(f_i(x) ...

  3. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  4. LG4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 $n-1$ 的数组 $g[1],g[2],..,g[n-1]$,求 $f[0],f[1],..,f[n-1]$ ...

  5. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  6. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  7. [poj1741][tree] (树/点分治)

    Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...

  8. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  9. BZOJ 3262 陌上花开 ——CDQ分治

    [题目分析] 多维问题,我们可以按照其中一维排序,然后把这一维抽象的改为时间. 然后剩下两维,就像简单题那样,排序一维,树状数组一维,按照时间分治即可. 挺有套路的一种算法. 时间的抽象很巧妙. 同种 ...

随机推荐

  1. java会不会出现内存泄露

    1 什么是java内存泄露 当java中的对象生命周期已经结束,本应该释放,但是却长时间不能被释放时,也就是说,内存被浪费了,就是内存泄露. 2 java内存泄露的根本原因 长生命周期的对象中持有短生 ...

  2. Requires: libstdc++.so.6(GLIBCXX_3.4.15)(64bit)

    Error: Package: mysql-community-server-8.0.12-1.el7.x86_64 (mysql80-community) Requires: libstdc++.s ...

  3. Javascript的参数详解

    函数可以有参数也可以没有参数,如果定义了参数,在调用函数的时候没有传值,默认设置为undefined 在调用函数时如果传递参数超过了定义时参数,jS会忽略掉多余参数 jS中不能直接写默认值,可以通过a ...

  4. office web apps的搭建部署(1)(写于2017.12.27)

    因为业务方面的需求,项目要求搭建office-web-apps这个玩意儿,做一个在线预览编辑的功能,为了方便,我下面都用OWA代替这个服务. 首先说一下什么是office-web-apps-serve ...

  5. BZOJ2120 数颜色 —— 待修改莫队

    题目链接:https://vjudge.net/problem/HYSBZ-2120 2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit:  ...

  6. Spring注解原理的详细剖析与实现

    本文主要分为三部分: 一. 注解的基本概念和原理及其简单实用 二. Spring中如何使用注解 三. 编码剖析spring@Resource的实现原理 一.注解的基本概念和原理及其简单实用 注解(An ...

  7. CSS元素水平垂直居中方法总结(主要对大漠以及张鑫旭博客所述方法进行了归纳)

    本文主要是对主流居中方法进行了归纳,有些地方甚至就是把别人的代码直接复制过来的,没有什么自己的东西,除了大漠以及张鑫旭的方法外,还有来自司徒正美.怿飞博客的几个方法 以下方法,由于测试环境的原因,IE ...

  8. Discuz/X3.1去掉标题中的Powered by Discuz!以及解决首页标题后的"-"

    虽然不提倡大家去掉版权信息,但是在实际操作的时候还是去掉,毕竟每个页面标题最后面出现”Powered by Discuz!“会显得页面标题比较冗长. 经过本人的实践,论坛里也有操作方法,不过那个操作方 ...

  9. zoj 2315 New Year Bonus Grant 解题报告

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1315 题目意思:Bill Hates 是公司的老总,她管辖着很多程序 ...

  10. 网页上传FLV视频文件

    上传 flv格式文件一致提示文件类型不允许,是因为CI中的配置文件没有支持这个格式 在 application/config/mimes.php中加入 'flv' => array('video ...