Description

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

Input

输入数据是一行,包括2个数字n和m

Output

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

Sample Input

2 2

Sample Output

2

HINT

【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000

/*
题解:http://blog.csdn.net/wzq_qwq/article/details/48706151
*/
#include<iostream>
#include<cstdio>
#define N 2000010
#define mod 20100403
#define lon long long
using namespace std;
lon inv[N],jc1[N],jc2[N];
void init(){
jc1[]=;for(int i=;i<N;i++) jc1[i]=(jc1[i-]*i)%mod;
inv[]=inv[]=;for(int i=;i<N;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
jc2[]=;for(int i=;i<N;i++) jc2[i]=(jc2[i-]*inv[i])%mod;
}
lon get_c(int n,int m){
return ((jc1[n]*jc2[m])%mod*jc2[n-m])%mod;
}
int main(){
init();
int n,m;scanf("%d%d",&n,&m);
cout<<(get_c(n+m,m)-get_c(n+m,m-)+mod)%mod;
return ;
}

字符串(bzoj 1856)的更多相关文章

  1. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  2. BZOJ 1856: [Scoi2010]字符串( 组合数 )

    求(0,0)->(n,m)且在直线y=x下方(可以在y=x上)的方案数...同 http://www.cnblogs.com/JSZX11556/p/4908648.html --------- ...

  3. BZOJ 1856: [Scoi2010]字符串 [Catalan数]

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1418  Solved: 790[Submit][Status][ ...

  4. bzoj 1856: [Scoi2010]字符串 卡特兰数

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1458  Solved: 814[Submit][Status][ ...

  5. BZOJ 1856 字符串(组合)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1856 题意:有n个1和m个0组成的串,使得任意前k个中1的个数不少于0的个数.有多少种这 ...

  6. bzoj 1856: [Scoi2010]字符串

    #include<cstdio> #include<iostream> #define Q 20100403 ; int main() { scanf("%lld%l ...

  7. BZOJ 1856 [SCOI2010]生成字符串 (组合数)

    题目大意:给你n个1和m个0,你要用这些数字组成一个长度为n+m的串,对于任意一个位置k,要保证前k个数字中1的数量大于等于0的数量,求所有合法的串的数量 答案转化为所有方案数-不合法方案数 所有方案 ...

  8. bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...

  9. bzoj 1856 组合

    这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...

随机推荐

  1. <转载>一般筛法和快速线性筛法求素数

    素数总是一个比较常涉及到的内容,掌握求素数的方法是一项基本功. 基本原则就是题目如果只需要判断少量数字是否为素数,直接枚举因子2 ..N^(0.5) ,看看能否整除N. 如果需要判断的次数较多,则先用 ...

  2. GPIO实现I2C协议模拟(2)

    接着上一节继续补充 结合上一节的描述 写Slave的过程如下(BYTE) 读Slave的过程如下(BYTE) 分为两段 第一段 ,写OFFSET,第二段读数据 WORD的方式与BYTE大同异 读行为 ...

  3. HashMap原理以及自己实现HashMap

    1.HashMap是什么? HashMap是java常用来存储键值对的数据结构,它是以key/value的形式存储的,它不是线程安全的,Key可以为null值. 2.HashMap的实现原理 Hash ...

  4. php扩展开发-哈希表

    什么是哈希表呢?哈希表在数据结构中也叫散列表.是根据键名经过hash函数计算后,映射到表中的一个位置,来直接访问记录,加快了访问速度.在理想情况下,哈希表的操作时间复杂度为O(1).数据项可以在一个与 ...

  5. JZOJ 5344. 摘果子

    Description Input Output Sample Input 7 9 39 6 13 2 22 6 7 4 -19 5 28 6 -17 1 2 1 3 2 4 1 5 4 6 2 7 ...

  6. day13内置函数

    内置函数 一.三元表达式 def max2(x,y): if x>y: return x else: return y res=max2(10,11) print(res) 三元表达式仅应用于: ...

  7. Centos7和Centos6防火墙开放端口配置方法(避坑教学)

    ▲这篇文章主要为大家详细介绍了Centos7防火墙开放端口的快速方法,感兴趣的小伙伴们可以参考一下! 一.CentOS 7快速开放端口: CentOS升级到7之后,发现无法使用iptables控制Li ...

  8. 安装Mysql community server遇到计算机中丢失msvcr120.dll

    一.下载community server版本 Mysql community server版本:https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7 ...

  9. 关于spark入门报错 java.io.FileNotFoundException: File file:/home/dummy/spark_log/file1.txt does not exist

    不想看废话的可以直接拉到最底看总结 废话开始: master: master主机存在文件,却报 执行spark-shell语句:  ./spark-shell  --master spark://ma ...

  10. 排查和处理一台被攻击的linux系统及其事后分析

    11:40 2018/3/16 发现最近几天服务器流量异常的大,检查了系统命令发现命令最近的修改时间很近,检查dns配置也发现了异常的dns服务器地址. 考虑到事态的严重性,铲掉这个系统重新搭建. 事 ...