洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336
当作考试题了,然而没想出来,呵呵。
其实不是二分图完美匹配方案数,而是矩阵树定理+容斥...
就是先放上所有的边,求生成树个数,但其中可能有的公司的边没有选上,所以减去至少一个公司没选上的,加上两个...
高斯消元里面可以直接除而不用辗转相除,因为取模可以乘逆元,反倒是辗转相除里不能直接用除法,会减不到0。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define pb push_back
using namespace std;
typedef long long ll;
int const xn=,xm=,mod=1e9+;
int n,m[xn],id[xn][xn],deg[xn][xn],sid[xn][xn],ans,cnt;
ll a[xn][xn];
vector<int>vc[xn];
struct N{int u,v;}ed[xm];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int gauss()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)a[i][j]=upt(deg[i][j]-sid[i][j]);
int fl=;
for(int i=;i<n;i++)
{
int t=i;
for(int j=i+;j<n;j++)
if(a[j][i]>a[t][i])t=j;
if(t!=i)
{
fl=-fl;
for(int j=;j<n;j++)swap(a[i][j],a[t][j]);
}
for(int j=i+;j<n;j++)
{
int tmp=(ll)a[j][i]*pw(a[i][i],mod-)%mod;//a[j][i]/a[i][i]
for(int k=i;k<n;k++)
a[j][k]=upt(a[j][k]-(ll)tmp*a[i][k]%mod);
}
}
ll ret=;
for(int i=;i<n;i++)ret=(ll)ret*a[i][i]%mod;
return ret*fl;
}
void dfs(int nw,int s)
{
if(nw==n)
{
int sum=gauss();
if((s&)==((n-)&))ans+=sum; else ans-=sum;
ans=upt(ans);
return;
}
dfs(nw+,s); int siz=vc[nw].size();
for(int i=;i<siz;i++)
{
int u=ed[vc[nw][i]].u,v=ed[vc[nw][i]].v;
deg[u][u]++; deg[v][v]++;
sid[u][v]++; sid[v][u]++;
}
dfs(nw+,s+);
for(int i=;i<siz;i++)
{
int u=ed[vc[nw][i]].u,v=ed[vc[nw][i]].v;
deg[u][u]--; deg[v][v]--;
sid[u][v]--; sid[v][u]--;
}
}
int main()
{
n=rd();
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
ed[++cnt].u=i,ed[cnt].v=j,id[i][j]=id[j][i]=cnt;
for(int i=;i<n;i++)
{
m[i]=rd();
for(int j=,x,y;j<=m[i];j++)x=rd(),y=rd(),vc[i].pb(id[x][y]);
}
dfs(,);
printf("%d\n",ans);
return ;
}
洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理的更多相关文章
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
随机推荐
- 软件工程第3次作业——Visual Studio 2017下针对代码覆盖率的C/C++单元测试
本项目Github地址(同时包括两个作业项目): Assignment03 -- https://github.com/Oberon-Zheng/SoftwareEngineeringAssignme ...
- Anaconda2
Anaconda 是一个打包的python,一次把好多需要的包都安装好了.对于Python2.7把PyQt5都弄好了,不需要自己来编译! 看看这个 http://conda.pydata.org/do ...
- CentOS 6.9上安装Mysql 5.7.18 安装
CentOS 6.9上安装Mysql 5.7.18 安装 下载地址:https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.18-linux-g ...
- js关于变量作为if条件的真假问题
var a = ""; if(a){ ..... }else{ .....} 以下情况会被认为返回false: "" 空的字符串 为 0 的数字 为 null ...
- 巧用redis位图存储亿级数据与访问
业务背景 现有一个业务需求,需要从一批很大的用户活跃数据(2亿+)中判断用户是否是活跃用户.由于此数据是基于用户的各种行为日志清洗才能得到,数据部门不能提供实时接口,只能提供包含用户及是否活跃的指定格 ...
- 简单理解ThreadLocal原理和适用场景
https://blog.csdn.net/qq_36632687/article/details/79551828?utm_source=blogkpcl2 参考文章: 正确理解ThreadLoca ...
- 深入详解WPF ControlTemplate
WPF包含数据模板和控件模板,其中控件模板又包括ControlTemplate和ItemsPanelTemplate,这里讨论一下WPF ControlTemplate. 其实WPF的每一个控件都有一 ...
- Unity3D 与 objective-c 之间数据交互。iOS SDK接口封装Unity3D接口 .-- 转载
Unity 3D 简单工程的创建.与Xcode 导出到iOS 平台请看这 Unity3D 学习 创建简单的按钮.相应事件 Unity C# 代码 using UnityEngine; using Sy ...
- EasyPlayer RTSP 安卓Android播放器显示模式设置方法
一般对于一个播放器,应该支持如下几种显示模式: 等比例,最大化区域显示,不裁剪 等比例,最大区域显示,裁剪 拉伸显示,铺满全屏 要实现这几种显示模式,其实只要对播放控件的布局进行些许调整即可.那Eas ...
- struts2的分页标签
1.准备tld文件 <?xml version="1.0" encoding="UTF-8" standalone="no"?> ...