「P4994」「洛谷11月月赛」 终于结束的起点(枚举
题目背景
终于结束的起点
终于写下句点
终于我们告别
终于我们又回到原点
……
一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演。
如果这次 NOIp 是你的起点,那么祝你的 OI 生涯如同夏花般绚烂。
如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。
也许这是你最后一次在洛谷上打比赛,也许不是。
不过,无论如何,祝你在一周后的比赛里,好运。
当然,这道题也和轮回有关系。
题目描述
广为人知的斐波拉契数列 \mathrm{fib}(n)fib(n) 是这么计算的

也就是 0, 1, 1, 2, 3, 5, 8, 13 \cdots0,1,1,2,3,5,8,13⋯,每一项都是前两项之和。
小 F 发现,如果把斐波拉契数列的每一项对任意大于 11 的正整数 MM 取模的时候,数列都会产生循环。
当然,小 F 很快就明白了,因为 (\mathrm{fib}(n - 1) \bmod Mfib(n−1)modM) 和 (\mathrm{fib}(n - 2) \bmod M)fib(n−2)modM) 最多只有 M ^ 2M2 种取值,所以在 M ^ 2M2 次计算后一定出现过循环。
甚至更一般地,我们可以证明,无论取什么模数 MM,最终模 MM 下的斐波拉契数列都会是 0, 1, \cdots, 0, 1, \cdots0,1,⋯,0,1,⋯。
现在,给你一个模数 MM,请你求出最小的 n > 0n>0,使得 \mathrm{fib}(n) \bmod M = 0, \mathrm{fib}(n + 1) \bmod M = 1fib(n)modM=0,fib(n+1)modM=1。
输入输出格式
输入格式:
输入一行一个正整数 MM。
输出格式:
输出一行一个正整数 nn。
输入输出样例
说明
样例 1 解释
斐波拉契数列为 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots0,1,1,2,3,5,8,13,21,34,⋯,在对 22 取模后结果为 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \cdots0,1,1,0,1,1,0,1,1,0,⋯。
我们可以发现,当 n = 3n=3 时,f(n) \bmod 2= 0, f(n + 1) \bmod 2 = 1f(n)mod2=0,f(n+1)mod2=1,也就是我们要求的 nn 的最小值。
数据范围
对于 30\%30% 的数据,M \leq 18M≤18;
对于 70\%70% 的数据,M \leq 2018M≤2018;
对于 100\%100% 的数据,2 \leq M \leq 706150=2≤M≤706150=0xAC666。
提示
如果你还不知道什么是取模 (\bmod)(mod),那我也很乐意告诉你,模运算是求整数除法得到的余数,也就是竖式除法最终「除不尽」的部分,也即a \bmod M =k \iff a = bM + k\ (M > 0, 0 \leq k < M)amodM=k⟺a=bM+k (M>0,0≤k<M)其中 a, b, ka,b,k 都是非负整数。
如果你使用 C / C++,你可以使用 % 来进行模运算。
如果你使用 Pascal,你可以使用 mod 来进行模运算。
题解
如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。
哈哈哈哈为什么要一上来就放催泪弹啊一点都不感动嘤嘤嘤嘤
一开始淡定的打表找规律,发现跟因子有些关系,大概就是对很多数而言是质因子的f乘起来再乘反复出现的质因子之类......
然后不想肝了挂了个机跑1~706150的答案,记了个最大值,好像最大值只是个211多少的七位数......
那还规律个鬼啊,暴力啊!
/*
qwerta
P4994 终于结束的起点 Accepted
100
代码 C++,0.25KB
比赛 【LGR-055】洛谷11月月赛
提交时间 2018-11-04 09:08:05
耗时/内存 70ms, 808KB
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main()
{
int m;
scanf("%d",&m);
int f0=,f1=;
for(long long n=;;++n)
{
int x=(f0+f1)%m;
if(f1==&&x==)
{
cout<<n;
break;
}
f0=f1;
f1=x;
}
return ;
}
「P4994」「洛谷11月月赛」 终于结束的起点(枚举的更多相关文章
- 「P4996」「洛谷11月月赛」 咕咕咕(数论
题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...
- 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心
题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi,地面的高度是 h_0 = 0 ...
- 洛谷11月月赛(284pts rank85)
https://www.luogu.org/contestnew/show/12006 我是比赛完后在去写的 这是我第一次打洛谷月赛,之前一次是比赛完才去看而且写了第一题就没写后面的了 284分,太水 ...
- 洛谷11月月赛题解(A-C)
心路历程 辣鸡T3卡我1.5h题意,要不是最后nlh跟我解释了一下大样例估计这次是真凉透了.. A P4994 终于结束的起点 打出暴力来发现跑的过最大数据?? 保险起见还是去oeis了一波,然后被告 ...
- 洛谷11月月赛round.1
太感动了#2 thwfhk 240 (801ms) 100 100 40 又一张明信片,话说10月的怎么还没收到 P2246 SAC#1 - Hello World(升级版) 题目背景 一天, ...
- 洛谷11月月赛round.2
P3414 SAC#1 - 组合数 题目背景 本题由世界上最蒟蒻最辣鸡最撒比的SOL提供. 寂月城网站是完美信息教室的官网.地址:http://191.101.11.174/mgzd . 题目描述 辣 ...
- NOIP模拟赛(洛谷11月月赛)
T1 终于结束的起点 题解:枚举啊... 斐波那契数 第46个爆int,第92个爆long long.... 发现结果一般是m的几倍左右....不用担心T. #include<iostream ...
- 【CSGRound2】逐梦者的初心(洛谷11月月赛 II & CSG Round 2 T3)
题目描述# 给你一个长度为\(n\)的字符串\(S\). 有\(m\)个操作,保证\(m≤n\). 你还有一个字符串\(T\),刚开始为空. 共有两种操作. 第一种操作: 在字符串\(T\)的末尾加上 ...
- 最大字段和&洛谷11月月赛DIV2 T1
蒟蒻只能打一打DIV2的基础题 太卑微了 这道题的本质其实是再建一个数组,如果s串i位置是0那么就给a[i]赋值为1,表示要累加个数,如果是1那么就把a[i]赋值为-1,表示个数减一,最后求最大子段和 ...
随机推荐
- UbuntuServer12.04安装MongoDB,开机自启,服务,权限
获取最新版本 去http://www.mongodb.org/downloads找最新版的链接 wget http://fastdl.mongodb.org/linux/mongodb-linux-x ...
- Appium python unittest pageobject如何实现加载多个case
学习了Appium python项目施展的课程小伙伴都会有一个疑问,说现在所有的case都是通过一个suite进行一个方法一个方法进行添加的,但是在实际过程中我们不希望这样,我们做出来的功能是这样: ...
- 三分钟教你学Git(十二) 之 fast-forward
什么是fast forward, 顾名思义,就是高速向前进,Git怎么做到高速的呢? 原来假设Git判定能够fast forward的时候,直接改动当前HEAD指针的指向然后再改动当前HEAD指针.说 ...
- 新装上线 年度精品 XP,32/64位Win7,32/64位Win10系统【电脑城版】
随着Windows 10Build 10074 Insider Preview版发布,有理由相信,Win10离最终RTM阶段已经不远了.看来稍早前传闻的合作伙伴透露微软将在7月底正式发布Win10的消 ...
- jquery 滚动效果插件
1.css <style> .fl { float: left; } .slider0 img { display: block; width:100px; padding: 2px; } ...
- WCP人员管理之添加人员
1.用户管理页面 其中 : var url_formActionUser = "user/form.do";//增加.修改.查看URL 2. 通过 /form 路由, 转到 Use ...
- 网页直播、微信直播技术解决方案:EasyNVR与EasyDSS流媒体服务器组合之区分不同场景下的easynvr
近期遇到好多客户咨询关于实现微信直播.或者是将直播页面集成进入自己项目中. 该方案的主要目的:完成在公网一直进行内网摄像头的RTMP/HLS直播! 实现方案的具体实现: EasyNVR+EasyDSS ...
- N皇后问题算法
N皇后问题的两种主要算法是试探回溯法和位运算法.前一种是经典算法,后一种是目前公认的最高效算法,后者比前者效率提高了至少一个数量级.很多问题可以借鉴位运算的思想. 以下是转载的我认为写的比较好的一篇N ...
- 九度OJ 1149:子串计算 (计数、排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1026 解决:571 题目描述: 给出一个01字符串(长度不超过100),求其每一个子串出现的次数. 输入: 输入包含多行,每行一个字符串. ...
- Python爬虫-- PyQuery库
PyQuery库 PyQuery库也是一个非常强大又灵活的网页解析库,PyQuery 是 Python 仿照 jQuery 的严格实现.语法与 jQuery 几乎完全相同,所以不用再去费心去记一些奇怪 ...