题目描述

有N个成员国。现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站。

这个星球经常会下陨石雨。BIU已经预测了接下来K场陨石雨的情况。BIU的第i个成员国希望能够收集Pi单位的陨石样本。你的任务是判断对于每个国家,它需要在第几次陨石雨之后,才能收集足够的陨石。

输入

第一行是两个数N,M。

第二行有M个数,第i个数Oi表示第i段轨道上有第Oi个国家的太空站。

第三行有N个数,第i个数Pi表示第i个国家希望收集的陨石数量。

第四行有一个数K,表示BIU预测了接下来的K场陨石雨。

接下来K行,每行有三个数Li,Ri,Ai,表示第K场陨石雨的发生地点在从Li顺时针到Ri的区间中(如果Li<=Ri,就是Li,Li+1,...,Ri,否则就是Ri,Ri+1,...,m-1,m,1,...,Li),向区间中的每个太空站提供Ai单位的陨石样本。

输出

N行。第i行的数Wi表示第i个国家在第Wi波陨石雨之后能够收集到足够的陨石样本。如果到第K波结束后仍然收集不到,输出NIE。

样例输入

3 5
1 3 2 1 3
10 5 7
3
4 2 4
1 3 1
3 5 2

样例输出

3
NIE
1


题解

整体二分+树状数组

答案满足二分性质,所以考虑将询问离线下来,然后整体二分解决。

令$solve(b,e,l,r)$表示处理询问下标区间为[b,e],修改的区间为[l,r]的答案。

那么l=r时直接答案为l。

当l≠r时,先处理[l,mid]的修改,然后统计[b,e]内每个国家得到的数量,判断是否小于p。可以把所有空间站挂链,然后把每个点上的加起来。这个过程区间修改单点查询,可以使用树状数组。

有一个小trick:可以把修改区间设置为[1,k+1],这样当某个答案为k+1时,说明k个不能满足,输出-1.

然而最恶心的是:本题爆long long!

考虑:300000个空间站属于1个国家,300000次修改,每次修改加到[1,300000]上,加上10^9,这样乘起来会爆long long的2^63-1。

于是被迫改成中精度,把每次的数对10^15取模,最后判断时结合着高位和低位一起看即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 300010
using namespace std;
typedef long long ll;
const ll mod = 1000000000000000ll;
ll w[N] , v[N] , f[N];
int m , a[N] , t[N] , lp[N] , rp[N] , head[N] , next[N] , ans[N];
void add(int x , ll a)
{
int i;
for(i = x ; i <= m ; i += i & -i) f[i] += a;
}
ll query(int x)
{
int i;
ll ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
void solve(int b , int e , int l , int r)
{
int mid = (l + r) >> 1 , i , j , tl = b , tr = e;
ll c , vc;
if(l == r)
{
for(i = b ; i <= e ; i ++ ) ans[a[i]] = l;
return;
}
for(i = l ; i <= mid ; i ++ )
{
if(lp[i] <= rp[i]) add(lp[i] , v[i]) , add(rp[i] + 1 , -v[i]);
else add(lp[i] , v[i]) , add(m + 1 , -v[i]) , add(1 , v[i]) , add(rp[i] + 1 , -v[i]);
}
for(i = b ; i <= e ; i ++ )
{
if(!w[a[i]]) t[tl ++ ] = a[i];
else
{
for(c = vc = 0 , j = head[a[i]] ; j ; j = next[j])
{
c += query(j);
if(c >= mod) vc += c / mod , c %= mod;
else if(c < 0) vc += c / mod - 1 , c = (c % mod + mod) % mod;
}
if(vc || c >= w[a[i]]) t[tl ++ ] = a[i];
else w[a[i]] -= c , t[tr -- ] = a[i];
}
}
for(i = b ; i <= e ; i ++ ) a[i] = t[i];
for(i = l ; i <= mid ; i ++ )
{
if(lp[i] <= rp[i]) add(lp[i] , -v[i]) , add(rp[i] + 1 , v[i]);
else add(lp[i] , -v[i]) , add(m + 1 , v[i]) , add(1 , -v[i]) , add(rp[i] + 1 , v[i]);
}
solve(b , tr , l , mid) , solve(tl , e , mid + 1 , r);
}
int main()
{
int n , i , x , k;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &x) , next[i] = head[x] , head[x] = i;
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &w[i]) , a[i] = i;
scanf("%d" , &k);
for(i = 1 ; i <= k ; i ++ ) scanf("%d%d%lld" , &lp[i] , &rp[i] , &v[i]);
solve(1 , n , 1 , k + 1);
for(i = 1 ; i <= n ; i ++ )
{
if(ans[i] >= 1 && ans[i] <= k) printf("%d\n" , ans[i]);
else puts("NIE");
}
return 0;
}

【bzoj2527】[Poi2011]Meteors 整体二分+树状数组的更多相关文章

  1. BZOJ2527 [Poi2011]Meteors 整体二分 树状数组

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686460.html 题目传送门 - BZOJ2527 题意 有$n$个国家. 太空里有$m$个太空站排成一个圆 ...

  2. BZOJ2527[Poi2011]Meteors——整体二分+树状数组

    题目描述 Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The ...

  3. 【BZOJ-2527】Meteors 整体二分 + 树状数组

    2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Stat ...

  4. BZOJ 2527 [Poi2011]Meteors (整体二分+树状数组)

    整体二分板题,没啥好讲的-注意是个环-还有所有贡献会爆longlong,那么只要在加之前判断一下有没有达到需要的值就行了- CODE #include <set> #include < ...

  5. bzoj 2527 Meteors - 整体二分 - 树状数组

    Description Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby gala ...

  6. BZOJ 2527 [POI2011]MET-Meteors (整体二分+树状数组)

    题目大意:略 洛谷传送门 整体二分裸题 考虑只有一个国家的情况如何处理 对询问数量二分答案,暴力$O(m)$打差分,求前缀和验证,时间是$O(mlogK)$ 如果有$n$个国家,就是$O(nmlogK ...

  7. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  8. BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组

    BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...

  9. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

随机推荐

  1. python剑指offer系列二叉树中和为某一值的路径

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...

  2. python实现剑指offer删除链表中重复的节点

    题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处理后 ...

  3. 模板引擎原理及underscore.js使用

    为什么要使用模板引擎 DOM结构简单,完全可以使用DOM方法创建DOM树.$("<td></td").appendTo(); 当页面比较复杂的时候,下面的程序中红 ...

  4. Java - Java 中的三种 ClassLoader

    1.虚拟机类加载器(称为“bootstrap class loader”),它本身没有父类加载器,它负责加载虚拟机的内置类,由于它是用C.C++写的,所以Java无法拿到其class文件,返回的都是空 ...

  5. centos下修改docker连接docker_host默认方式为tls方式

    1.安装docker,请参考官网文档 centos下安装docker 2.安装完成应该可以使用docker的各种命令连接docker host.docker host运行在本机上,但与localhos ...

  6. 一、MySQL 安装

    MySQL 安装 所有平台的 MySQL 下载地址为: MySQL 下载 . 挑选你需要的 MySQL Community Server 版本及对应的平台. 注意:安装过程我们需要通过开启管理员权限来 ...

  7. Laravel 打印已执行的sql语句

    打开app\Providers\AppServiceProvider.PHP,在boot方法中添加如下内容 5.2以下版本 // 先引入DB use DB; // 或者直接使用 \DB:: DB::l ...

  8. JZOJ 100029. 【NOIP2017提高A组模拟7.8】陪审团

    100029. [NOIP2017提高A组模拟7.8]陪审团 Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limits   Got ...

  9. 使用观察者模式更新Fragment的内容

    最近有个需求,就是在Fragment没有切换的时候(show,hide)更新Fragment显示的内容,想了一会,终于想到可以用观察者模式来解决这个问题的. 定义一个[被观察者(接口)]: publi ...

  10. mini购物车程序

    product_list=[("Iphohe",5800),("Mac Pro Book",12900), ("xiaomi 4c",120 ...