NOI-OJ 2.2 ID:8758 2的幂次方表示
思路
- 可以把任意一个数转化为2a+2b+2c+...+2n
- 例如137的二进制为10001001,这就等效于27+23+2^0
- 以上结果如何通过程序循环处理呢?需要把数字n分解为上述公式,对指数(a,b,...n)依次进行递归
- 要对整个结果进行递归生成字符串组后一次性输出比较麻烦,但若是递归输出就会很简单。
算法流程
- 将数字n的幂次方组合信息计算出来,存放在数组中
- 输出每一个加数项的底数和空格,指数通过递归方式输出
cout<<"2(";
mici(p);
cout<<")";
第1步的处理方法有多种,可以使用数组,也可以使用按位运算,详见例程
例程1
#include<iostream>
using namespace std;
void power(int n){
int i;
int plusFlag=1;
for(i=15; i>=0; i--){
if(n&(1<<i)){ //按位运算
if(plusFlag==1) plusFlag=0; //只有一次不输出“+”
else printf("+");
if(i==0) printf("2(0)"); //临界点
else if(i==1) printf("2"); //临界点
else if(i==2) printf("2(2)"); //临界点
else{
printf("2(");
power(i); //递归
printf(")");
}
}
}
}
int main(){
int n;
cin>>n;
power(n);
return 0;
}
该程序使用了按位运算和移位运算:
移位运算
左移位运算“a<<b”,可以将a的二进制位左移b位,右边补0,左边移出的丢弃
右移位运算“a>>b”,可以将a的二进制位右移b位,左边补0,右边移动的丢弃
例1:137在4字节表示的情况下为00000000 00000000 00000000 10001001
00000000 00000000 00000000 10001001 >>4 得到:
00000000 00000000 00000000 00001000
00000000 00000000 00000000 10001001 <<4 得到:
00000000 00000000 00001000 10010000
同时可以看到,左移1位在左边没有有效位(1)溢出的情况下,相当于乘2,右移1位相当于除2(只保留整数部分)
按位运算
1. 0&0-->0 0&1-->0 1&0-->0 1&1-->1
2. 0|0-->0 0|1-->1 1|0-->1 1|1-->1
3. ^0-->1 ^1-->0
运算规则见例子:
10101010 & 01010101 ---> 00000000 //170 & 85 ---> 0
10101010 | 01010101 ---> 11111111 //170 | 85 ---> 127
^10101010 ---> 01010101 //^170 ---> 85
^11111111 ---> 00000000 //^127 ---> 0
通过按位、移位运算我们可以对数字的比特位进行操作,但功能不仅限于此,在很多题目中,善用按位和移位运算可以帮助我们轻松解决问题,要善于灵活应用,本题就是一个例子。按位和移位运算都是CPU的基本指令,所以这些运算的效率是比较高的。
自反赋值运算符
和其它运算符一样,按位和移位也有自反赋值运算符,方便使用:
a<<=b //a=a<<b;
a>>=b //a=a>>b;
a&=b //a=a&b;
a|=b //a=a|b;
例程2
#include<iostream>
using namespace std;
void power(int n){
int jishu[16]={0}; //存放级数信息(每个幂次的指数)
int count=0; //有几个加法项 (幂次)
int i=0; //i用于计算指数
while(n){
if(n%2) jishu[count++]=i;
n/=2;
i++; //每做一次除法,指数增加1
}
//这里的思路是:共出现了count次1,第i个1出现的位置是jishu[i],
//所以jishu[i]代表的是第i个1的级数,即2^jishu[i]
for(int i=count-1; i>=0; i--){
if(jishu[i]==0) printf("2(0)"); //临界值
else if(jishu[i]==1) printf("2"); //临界值
else if(jishu[i]==2) printf("2(2)"); //临界值
else{
printf("2(");
power(jishu[i]);
printf(")");
}
if(i!=0) printf("+"); //最后一次不输出“+”
}
}
int main(){
int n;
cin>>n;
power(n);
return 0;
}
NOI-OJ 2.2 ID:8758 2的幂次方表示的更多相关文章
- NOI2.2 8758:2的幂次方表示
描述任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20 同时约定方次用括号来表示,即ab可表示为a(b).由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7=22 ...
- 【noi 2.2_8758】2的幂次方表示(递归)
题意:将正整数N用2的幂次方表示(彻底分解至2(0),2). 解法:将层次间和每层的操作理清楚,母问题分成子问题就简单了.但说得容易,操作没那么容易,我就打得挺纠结的......下面附上2个代码,都借 ...
- [NOI OJ]6044:鸣人和佐助
6044:鸣人和佐助 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 佐助被大蛇丸诱骗走了,鸣人在多少时间内能追上他呢? 已知一张地图(以二维矩阵的形式表示) ...
- 九度OJ 1095:2的幂次方 (递归)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:913 解决:626 题目描述: Every positive number can be presented by the exponent ...
- 递归--练习9--noi8758 2的幂次方表示
递归--练习9--noi8758 2的幂次方表示 一.心得 找准子问题就好 二.题目 8758:2的幂次方表示 总时间限制: 1000ms 内存限制: 65536kB 描述 任何一个正整数都可以用 ...
- SWUST OJ NBA Finals(0649)
NBA Finals(0649) Time limit(ms): 1000 Memory limit(kb): 65535 Submission: 404 Accepted: 128 Descri ...
- 【noi 2.6_9283】&【poj 3088】Push Botton Lock(DP--排列组合 Stirling数)
题意:N个编号为1~N的数,选任意个数分入任意个盒子内(盒子互不相同)的不同排列组合数. 解法:综合排列组合 Stirling(斯特林)数的知识进行DP.C[i][j]表示组合,从i个数中选j个数的方 ...
- 【noi 2.6_9290】&【poj 2680】Computer Transformation(DP+高精度+重载运算符)
题意:给一个初始值1,每步操作将1替换为01,将0替换为10.问N步操作后有多少对连续的0. 解法:f[i]表示第i步后的答案.可以直接打表发现规律--奇数步后,f[i]=f[i-1]*2-1;偶数步 ...
- 【noi 2.6_2000】&【poj 2127】 最长公共子上升序列 (DP+打印路径)
由于noi OJ上没有Special Judge,所以我是没有在这上面AC的.但是在POJ上A了. 题意如标题. 解法:f[i][j]表示a串前i个和b串前j个且包含b[j]的最长公共上升子序列长度 ...
随机推荐
- Kafka 特性
Kafka 特性 标签(空格分隔): Kafka 支持多个生产者 多个生成者连接Kafka来推送消息,这个和其他的消息队列功能基本上是一样的 支持多个消费者 Kafka支持多个消费者来读取同一个消息流 ...
- zabbix忘记admin登录密码重置密码
问题描述: 有时候忘记admin的密码了,因为账号太多 解决方案: 1.zabbix连接的是mysql数据库 [root@localhost /]# mysql -uroot -pAbc123 #-u ...
- Bootstrap Multiselect插件使用步骤以及常见参数配置介绍
Multiselect是基于jQuery插件的,它可以以下拉列表的形式为用户提供选择内容,能进行单选或者多选.它应用的主要步骤如下: 一,引入需要的相关js和css文件 既然是Bootstrap插件, ...
- Redis学习笔记(1)——Redis简介
一.Redis是什么? Remote Dictionary Server(Redis) 是一个开源的使用ANSI C语言编写.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value ...
- JAVA—枚举(Enum)学习总结
1.枚举(Enumeration) 枚举(The Enumeration)接口定义了一种从数据结构中取回连续元素的方式.这种传统接口已被迭代器取代,虽然Enumeration 还未被遗弃,但在现代代码 ...
- Linux-基础学习(四)-部署图书管理系统项目
部署图书管理项目需要以下软件 项目文件(django项目文件夹) 数据库文件(django项目对应的数据库文件) centos7(linux本体) nginx(反向代理以及静态文件收集) uWSGI( ...
- linux用户身份和文件权限
1.用户身份与能力 root管理员是linux 的超级用户,他拥有系统的所有权,能够管理系统的各项功能,如添加/删除用户,启动/关闭服务进程,开启/禁用硬件设备…… "Linux系统中的管理 ...
- SQL学习 DECODE
from 百度百科: DECODE有什么用途呢? 先构造一个例子,假设我们想给这些职员加工资,其标准是:工资在8000元以下的加20%:工资在8000元或以上的加15%,通常的做法是,先选出记录中的工 ...
- Redtiger SQL注入练习(二)
第六关: 点击 click me,构造url:user=1',返回user not found.user=1'',同样. 猜测是数字型注入,构造order by , user=1 order by ...
- 【Topcoder 1879】Scheduling
题意:给一个\(dag\),每一个点有一个访问时间. 现在可以同时访问两个点,但当连向这个点的所有点都被访问完成后才可以访问这个点. 问最短访问时间. 思路:一眼贪心.可惜是错的. 第二眼暴搜.就这么 ...