我们可以发现所有的操作当中,只有坐标的增加,没有坐标的减少。

所以我们可以发现这么一个简单的事实,一条鱼一旦出了渔网,那么它就不可能再回来。

但是目前这并没有什么卵用。

我们可以把询问一个矩阵当中的鱼的数量转化为分别求这个矩阵的四个角的左下角的鱼的数量。又因为我们发现x和y的坐标是独立的,所以我们可以分别维护。

维护这个东西本人使用的线段树,在这里维护了八颗线段树。

然后在维护的过程中,八颗线段树应该是两两配对维护的,也就是x坐标和y坐标应该一同维护,因为我们维护的是某一个点的左下角的点的数量,所以我们在维护任意一对线段树时,如果我们发现某一个点的某一维超过了限制,那么就直接删除这个点(删除这个点的时候直接将两个坐标置为-inf)保证它不会再次影响到答案(好吧,这个性质还是有卵用的)。

这道题实际上是考察代码力。。。 。。。

 #include <queue>
#include <cstdio>
#include <cstring>
#include <climits>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=*x+ch-'',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
const int maxn = ;
const ll inf = LLONG_MAX>>;
int n,m,X[maxn],Y[maxn];
int sum[maxn<<][];
ll max_x[maxn<<][],max_y[maxn<<][];
ll lazy_x[maxn<<][],lazy_y[maxn<<][];
int stander_x[],stander_y[];
int ls,rs,dx,idx;
inline void push_down(int x){
if(lazy_x[x][idx]){
max_x[x<<][idx] += lazy_x[x][idx];
lazy_x[x<<][idx] += lazy_x[x][idx];
max_x[x<<|][idx] += lazy_x[x][idx];
lazy_x[x<<|][idx] += lazy_x[x][idx];
lazy_x[x][idx] = ;
}
if(lazy_y[x][idx]){
max_y[x<<][idx] += lazy_y[x][idx];
lazy_y[x<<][idx] += lazy_y[x][idx];
max_y[x<<|][idx] += lazy_y[x][idx];
lazy_y[x<<|][idx] += lazy_y[x][idx];
lazy_y[x][idx] = ;
}
return ;
}
inline void update(int x){
sum[x][idx] = sum[x<<][idx] + sum[x<<|][idx];
max_x[x][idx] = cat_max(max_x[x<<][idx],max_x[x<<|][idx]);
max_y[x][idx] = cat_max(max_y[x<<][idx],max_y[x<<|][idx]);
return ;
}
void build(int rt,int l,int r){
lazy_x[rt][idx] = lazy_y[rt][idx] = ;
if(l == r){
if(X[l] <= stander_x[idx] && Y[l] <= stander_y[idx]){
sum[rt][idx] = ;
max_x[rt][idx] = X[l];
max_y[rt][idx] = Y[l];
}else{
sum[rt][idx] = ;
max_x[rt][idx] = -inf;
max_y[rt][idx] = -inf;
} return;
}
int mid = l+r >> ;
build(rt<<,l,mid);
build(rt<<|,mid+,r);
update(rt);
}
void modify_x(int rt,int l,int r){
if(ls <= l && r <= rs){
lazy_x[rt][idx] += dx;
max_x[rt][idx] += dx;
return;
}
push_down(rt);
int mid = l+r >> ;
if(ls <= mid) modify_x(rt<<,l,mid);
if(rs > mid) modify_x(rt<<|,mid+,r);
update(rt);
}
void modify_y(int rt,int l,int r){
if(ls <= l && r <= rs){
lazy_y[rt][idx] += dx;
max_y[rt][idx] += dx;
return;
}
push_down(rt);
int mid = l+r >> ;
if(ls <= mid) modify_y(rt<<,l,mid);
if(rs > mid) modify_y(rt<<|,mid+,r);
update(rt);
}
ll query(int rt,int l,int r){
if(ls <= l && r <= rs) return sum[rt][idx];
push_down(rt);
int mid = l+r >> ;
if(rs <= mid) return query(rt<<,l,mid);
if(ls > mid) return query(rt<<|,mid+,r);
return query(rt<<,l,mid) + query(rt<<|,mid+,r);
}
void prse(int rt,int l,int r){
if(max_x[rt][idx] <= stander_x[idx] && max_y[rt][idx] <= stander_y[idx]) return;
if(l == r){
sum[rt][idx] = ;
max_x[rt][idx] = -inf;
max_y[rt][idx] = -inf;
return;
}
push_down(rt);
int mid = l+r >> ;
prse(rt<<,l,mid);
prse(rt<<|,mid+,r);
update(rt);
}
inline void work(){
int n;read(n);
int x1,y1,x2,y2;
read(x1);read(y1);read(x2);read(y2);
stander_x[] = x2;stander_y[] = y2;
stander_x[] = x1-;stander_y[] = y2;
stander_x[] = x2;stander_y[] = y1-;
stander_x[] = x1-;stander_y[] = y1-;
for(int i=;i<=n;++i) read(X[i]),read(Y[i]);
for(idx = ;idx < ;++ idx) build(,,n),prse(,,n);
int m;read(m);
for(int i=,op;i<=m;++i){
read(op);read(ls);read(rs);
if(op == ){
read(dx);
for(idx = ;idx < ;++idx) modify_x(,,n),prse(,,n);
}else if(op == ){
read(dx);
for(idx = ;idx < ;++idx) modify_y(,,n),prse(,,n);
}else{
static ll num[];
for(idx = ;idx < ;++idx)
num[idx] = query(,,n);
// printf("I got it:: %d %d %d %d\n",num[3],num[2],num[1],num[0]);
ll ans = num[] - num[] - num[] + num[];
printf("%lld\n",ans);
}
}
}
int main(){
freopen("skyfishs.in","r",stdin);
freopen("skyfishs.out","w",stdout);
int T;read(T);
while(T--) work();
getchar();getchar();
fclose(stdin);fclose(stdout);
return ;
}

COGS 2533. [HZOI 2016]小鱼之美的更多相关文章

  1. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  2. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

  3. cogs——2478. [HZOI 2016]简单的最近公共祖先

    2478. [HZOI 2016]简单的最近公共祖先 ★☆   输入文件:easy_LCA.in   输出文件:easy_LCA.out   简单对比时间限制:2 s   内存限制:128 MB [题 ...

  4. COGS 2199. [HZOI 2016] 活动投票

    2199. [HZOI 2016] 活动投票 ★★   输入文件:hztp.in   输出文件:hztp.out   简单对比时间限制:0.5 s   内存限制:2 MB [题目描述] 衡中活动很多, ...

  5. COGS 2485. [HZOI 2016]从零开始的序列

    2485. [HZOI 2016]从零开始的序列 ★★   输入文件:sky_seq.in   输出文件:sky_seq.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] ...

  6. COGS 2334. [HZOI 2016]最小函数值

    时间限制:1 s   内存限制:128 MB [题目描述] 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Aix2+Bix+Ci(x∈N∗).给定这些Ai.Bi和Ci,请求出所有函数的所 ...

  7. cogs——2419. [HZOI 2016]公路修建2

    2419. [HZOI 2016]公路修建2 ★☆   输入文件:hzoi_road2.in   输出文件:hzoi_road2.out   简单对比时间限制:1 s   内存限制:128 MB [题 ...

  8. cogs——2416. [HZOI 2016]公路修建

    2416. [HZOI 2016]公路修建 ★☆   输入文件:hzoi_road.in   输出文件:hzoi_road.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述 ...

  9. cogs 2478. [HZOI 2016]简单的最近公共祖先

    2478. [HZOI 2016]简单的最近公共祖先 ★☆   输入文件:easy_LCA.in   输出文件:easy_LCA.out   简单对比时间限制:2 s   内存限制:128 MB [题 ...

随机推荐

  1. Mysql FROM_UNIXTIME效率 VS PHP date()效率 数据说话!

    这几天在做数据统计,有几个统计图的需求是这样的: 按照年.月.日统计订单数量, 比方一年12个月,统计出1月多少订单,二月多少订单,按照这种模式统计. 但是数据库里存放的是 timestamp  的  ...

  2. 智软科技医疗器械GSP监管软件通过多省市药监局检查

    提供医疗器械GSP监管软件,通过多省市药监局检查,符合2016年最新GSP监管条例的要求. 企业客户列表 温岭市万悦医疗器械有限公司 杭州市上善医疗器械有限公司 武汉明德生物科技股份有限公司 http ...

  3. window7 桌面新建快捷方式方法

    点击开始按钮 所有程序 找到某个文件夹点开,找到文件夹里的快捷方式图标,右键--属性-- 复制 目标:上图蓝色内容. 回到桌面,右键--新建--快捷方式--把复制的内容粘贴到  请键入对象的位置-- ...

  4. Node.js 教程 02 - 经典的Hello World

    前言: Node.js的介绍.安装及配置,上一节都已经介绍过了,如果有不清楚的也可以留言或者直接问度娘. 本节: 本节主要以一个简单的例子简单体验一下Node.js,用到了两种方法.下面会介绍. 总之 ...

  5. SQL:执行顺序

    SELECT语句的执行的逻辑查询处理步骤: (8)SELECT (9)DISTINCT(11)<TOP_specification> <select_list>(1)FROM ...

  6. PHP语法(一):基础和变量

    相关链接: PHP语法(一):基础和变量 PHP语法(二):数据类型.运算符和函数 PHP语法(三):控制结构(For循环/If/Switch/While) 最近有个H5项目的需求,需要服务端,考察过 ...

  7. Windows Git安装指南

    步骤如下: 1.资源下载 :Git-1.9.4-preview20140815.exe http://code.google.com/p/tortoisegit/downloads/list 2.安装 ...

  8. LDR、STR指令

    LDR(load register)指令将内存内容加载入通用寄存器 STR(store register)指令将寄存器内容存入内存空间中 #define GPJ0CON 0xE0200240 _sta ...

  9. Mysql5.5升级到5.7后MySQLdb不能正常使用的问题解决

    ubuntu系统 报错信息1 Type "help", "copyright", "credits" or "license&qu ...

  10. [LeetCode] Unique Substrings in Wraparound String 封装字符串中的独特子字符串

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...