我们可以发现所有的操作当中,只有坐标的增加,没有坐标的减少。

所以我们可以发现这么一个简单的事实,一条鱼一旦出了渔网,那么它就不可能再回来。

但是目前这并没有什么卵用。

我们可以把询问一个矩阵当中的鱼的数量转化为分别求这个矩阵的四个角的左下角的鱼的数量。又因为我们发现x和y的坐标是独立的,所以我们可以分别维护。

维护这个东西本人使用的线段树,在这里维护了八颗线段树。

然后在维护的过程中,八颗线段树应该是两两配对维护的,也就是x坐标和y坐标应该一同维护,因为我们维护的是某一个点的左下角的点的数量,所以我们在维护任意一对线段树时,如果我们发现某一个点的某一维超过了限制,那么就直接删除这个点(删除这个点的时候直接将两个坐标置为-inf)保证它不会再次影响到答案(好吧,这个性质还是有卵用的)。

这道题实际上是考察代码力。。。 。。。

 #include <queue>
#include <cstdio>
#include <cstring>
#include <climits>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=*x+ch-'',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
const int maxn = ;
const ll inf = LLONG_MAX>>;
int n,m,X[maxn],Y[maxn];
int sum[maxn<<][];
ll max_x[maxn<<][],max_y[maxn<<][];
ll lazy_x[maxn<<][],lazy_y[maxn<<][];
int stander_x[],stander_y[];
int ls,rs,dx,idx;
inline void push_down(int x){
if(lazy_x[x][idx]){
max_x[x<<][idx] += lazy_x[x][idx];
lazy_x[x<<][idx] += lazy_x[x][idx];
max_x[x<<|][idx] += lazy_x[x][idx];
lazy_x[x<<|][idx] += lazy_x[x][idx];
lazy_x[x][idx] = ;
}
if(lazy_y[x][idx]){
max_y[x<<][idx] += lazy_y[x][idx];
lazy_y[x<<][idx] += lazy_y[x][idx];
max_y[x<<|][idx] += lazy_y[x][idx];
lazy_y[x<<|][idx] += lazy_y[x][idx];
lazy_y[x][idx] = ;
}
return ;
}
inline void update(int x){
sum[x][idx] = sum[x<<][idx] + sum[x<<|][idx];
max_x[x][idx] = cat_max(max_x[x<<][idx],max_x[x<<|][idx]);
max_y[x][idx] = cat_max(max_y[x<<][idx],max_y[x<<|][idx]);
return ;
}
void build(int rt,int l,int r){
lazy_x[rt][idx] = lazy_y[rt][idx] = ;
if(l == r){
if(X[l] <= stander_x[idx] && Y[l] <= stander_y[idx]){
sum[rt][idx] = ;
max_x[rt][idx] = X[l];
max_y[rt][idx] = Y[l];
}else{
sum[rt][idx] = ;
max_x[rt][idx] = -inf;
max_y[rt][idx] = -inf;
} return;
}
int mid = l+r >> ;
build(rt<<,l,mid);
build(rt<<|,mid+,r);
update(rt);
}
void modify_x(int rt,int l,int r){
if(ls <= l && r <= rs){
lazy_x[rt][idx] += dx;
max_x[rt][idx] += dx;
return;
}
push_down(rt);
int mid = l+r >> ;
if(ls <= mid) modify_x(rt<<,l,mid);
if(rs > mid) modify_x(rt<<|,mid+,r);
update(rt);
}
void modify_y(int rt,int l,int r){
if(ls <= l && r <= rs){
lazy_y[rt][idx] += dx;
max_y[rt][idx] += dx;
return;
}
push_down(rt);
int mid = l+r >> ;
if(ls <= mid) modify_y(rt<<,l,mid);
if(rs > mid) modify_y(rt<<|,mid+,r);
update(rt);
}
ll query(int rt,int l,int r){
if(ls <= l && r <= rs) return sum[rt][idx];
push_down(rt);
int mid = l+r >> ;
if(rs <= mid) return query(rt<<,l,mid);
if(ls > mid) return query(rt<<|,mid+,r);
return query(rt<<,l,mid) + query(rt<<|,mid+,r);
}
void prse(int rt,int l,int r){
if(max_x[rt][idx] <= stander_x[idx] && max_y[rt][idx] <= stander_y[idx]) return;
if(l == r){
sum[rt][idx] = ;
max_x[rt][idx] = -inf;
max_y[rt][idx] = -inf;
return;
}
push_down(rt);
int mid = l+r >> ;
prse(rt<<,l,mid);
prse(rt<<|,mid+,r);
update(rt);
}
inline void work(){
int n;read(n);
int x1,y1,x2,y2;
read(x1);read(y1);read(x2);read(y2);
stander_x[] = x2;stander_y[] = y2;
stander_x[] = x1-;stander_y[] = y2;
stander_x[] = x2;stander_y[] = y1-;
stander_x[] = x1-;stander_y[] = y1-;
for(int i=;i<=n;++i) read(X[i]),read(Y[i]);
for(idx = ;idx < ;++ idx) build(,,n),prse(,,n);
int m;read(m);
for(int i=,op;i<=m;++i){
read(op);read(ls);read(rs);
if(op == ){
read(dx);
for(idx = ;idx < ;++idx) modify_x(,,n),prse(,,n);
}else if(op == ){
read(dx);
for(idx = ;idx < ;++idx) modify_y(,,n),prse(,,n);
}else{
static ll num[];
for(idx = ;idx < ;++idx)
num[idx] = query(,,n);
// printf("I got it:: %d %d %d %d\n",num[3],num[2],num[1],num[0]);
ll ans = num[] - num[] - num[] + num[];
printf("%lld\n",ans);
}
}
}
int main(){
freopen("skyfishs.in","r",stdin);
freopen("skyfishs.out","w",stdout);
int T;read(T);
while(T--) work();
getchar();getchar();
fclose(stdin);fclose(stdout);
return ;
}

COGS 2533. [HZOI 2016]小鱼之美的更多相关文章

  1. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  2. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

  3. cogs——2478. [HZOI 2016]简单的最近公共祖先

    2478. [HZOI 2016]简单的最近公共祖先 ★☆   输入文件:easy_LCA.in   输出文件:easy_LCA.out   简单对比时间限制:2 s   内存限制:128 MB [题 ...

  4. COGS 2199. [HZOI 2016] 活动投票

    2199. [HZOI 2016] 活动投票 ★★   输入文件:hztp.in   输出文件:hztp.out   简单对比时间限制:0.5 s   内存限制:2 MB [题目描述] 衡中活动很多, ...

  5. COGS 2485. [HZOI 2016]从零开始的序列

    2485. [HZOI 2016]从零开始的序列 ★★   输入文件:sky_seq.in   输出文件:sky_seq.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] ...

  6. COGS 2334. [HZOI 2016]最小函数值

    时间限制:1 s   内存限制:128 MB [题目描述] 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Aix2+Bix+Ci(x∈N∗).给定这些Ai.Bi和Ci,请求出所有函数的所 ...

  7. cogs——2419. [HZOI 2016]公路修建2

    2419. [HZOI 2016]公路修建2 ★☆   输入文件:hzoi_road2.in   输出文件:hzoi_road2.out   简单对比时间限制:1 s   内存限制:128 MB [题 ...

  8. cogs——2416. [HZOI 2016]公路修建

    2416. [HZOI 2016]公路修建 ★☆   输入文件:hzoi_road.in   输出文件:hzoi_road.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述 ...

  9. cogs 2478. [HZOI 2016]简单的最近公共祖先

    2478. [HZOI 2016]简单的最近公共祖先 ★☆   输入文件:easy_LCA.in   输出文件:easy_LCA.out   简单对比时间限制:2 s   内存限制:128 MB [题 ...

随机推荐

  1. linux使用wkhtmltopdf报错error while loading shared libraries:

    官网提示 linux需要这些动态库.depends on: zlib, fontconfig, freetype, X11 libs (libX11, libXext, libXrender) 在li ...

  2. javaScript中的小细节-局部作用域中的var

    javaScript中var是很神奇的,在局部作用域中,var a = b = c = 1;是不一样的,a为使用var声明的变量,而b和c则是全局下的,此类变量被称为隐式全局变量:var a = 1; ...

  3. android okvolley框架搭建

    最近新出了很多好东西都没时间去好好看看,现在得好好复习下了,记下笔记 记得以前用的框架是android-async-http,volley啊,或者其它的,然后后面接着又出了okhttp,retrofi ...

  4. 非RootLayer的隐式动画

    非RootLayer都有隐式动画,默认0.25秒. // 1.开启 [CATransaction begin]; // 2.设置关闭 YES-关闭:NO-开启 [CATransaction setDi ...

  5. 了解JavaScript 数组对象及其方法

    数组在我目前学习过的编程语言中都可以见到, 形形色色的方法也数不胜数, 不过功能都一样, 最多也就是方法名稍稍有所不同, 老外也没个准啊, 如果英语比较好的同学对于学习方法(method)来说是很快的 ...

  6. vim的高亮查找操作

    使用了VIM这么久,却一直无法牢记一些基本的操作指令.今天查找一个关键字时,想不起来怎么查找“下一个”,于是google之并解决,顺便把有用的都贴过来罢. 查找指令:/xxx 往下查找?xxx 往上  ...

  7. jquery双向列表选择器select版

    这个是select版的,若想美化某些样式是不支持得,可以用div模拟版的,功能基本实现能用了,需要其他功能自己加上. div模拟版链接:http://www.cnblogs.com/tie123abc ...

  8. [AlwaysOn Availability Groups]监控AG性能

    监控AG性能 AG的性能的性能方面,在关键任务数据库上进行语句级维护性能是很重要的.理解AG如何传输日志到secondary副本对评估RTO和RPO,表明AG是否性能不好. 1. 数据同步步骤 为了评 ...

  9. redis主从

    安装: tar -zxvf redis-3.2.6.tar.gz cd redis-3.2.6make make installcd utils/ sh install_server.sh 主: 配置 ...

  10. Linux C语言解析.bmp格式图片并显示汉字

    bmp.h 文件 #ifndef __BMP_H__ #define __BMP_H__ #include <unistd.h> #include <stdio.h> #inc ...