原题链接 https://www.luogu.org/problemnew/show/P2613

在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过!

进入正题:

首先看到题面:给出一个有理数c=a/b,求c mod 19260817的值。

看一下数据范围

我滴天!!!又要写高精???GG无疑!!!

咦,既然要取余,还做乘法运算,那只要写个快读在读入时取膜不就好啦,这样就爆不了long long 了。

有理数求余???搞笑呢,不是只有整数求余嘛?

我们知道有理数包含整数和分数,那么分数求余我们都知道是没有什么意义的。

那肿么办呢?——转化!!!

前面说过这是一道数论题,那么解此题一定要用到数论知识!!!

在我发现的数论知识里,可以用以下两个知识来解此题:

1.费马小定理

如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)。

此题已经明确给出mod数19260817,显然它是一个质数,那么我们就可以用费马小定理转化一下,如下:

因为a^(p-1)≡1(mod p)

所以a^(p-2)≡a^(-1) (mod p)    (A)

所以c=a/b=a*b^(-1)≡a*b^(p-2) (mod p)

证毕!

所以我们就可以将在膜p意义下的a/b转化成a*b^(p-2)的形式,所以我们只要求出b^(p-2)就大功告成啦,具体做法用快速幂。

2.扩展欧几里德

上面已经证过求在膜p意义下的a/b就是求a*b^(-1),b^(-1)就是b的逆元

下面给出求b的逆元的一种方法:

若存在一个数x,满足bx≡1 (mod p),那么x就是b的逆元

可将bx≡1 (mod p)进一步转化:

bx-1≡0 (mod p)

bx-1=-yp    (注:这里说一下为什么是-y,其实这里是不是正负无所谓,写成负的更便于理解)

bx+py=1

化简到这里我们就知道要用扩展欧几里德做了,求出了b的逆元x后再乘a取膜就是最后答案啦,下面看代码:

#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=;
inline long long read() //快读,边读边取余
{
long long t=;
char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='')
{
t=(t*+(ch-''))%mod;
ch=getchar();
}
return t;
}
int exgcd(long long a,long long b,long long &x,long long &y) //扩展欧几里德算法,求b的逆元
{
if(b==)
{
x=;y=;
return a;
}
long long r=exgcd(b,a%b,x,y);
long long q=x;
x=y;
y=q-a/b*y;
return r;
}
int main()
{
long long a,b,x,y;
a=read();
b=read();
if(b==) //一步特判,因为b是分母不能是0,如果b==0则无解
{
cout<<"Angry!";
return ;
}
exgcd(b,mod,x,y);
x=(x%mod+mod)%mod; //这步操作是确保x是b的逆元中最小的正整数
printf("%lld",(a%mod*x%mod)%mod); //记得多膜几次哦
return ;
}

其实作为一个提高+/省选-是不是有点夸大了?

P2613 有理数取余的更多相关文章

  1. 洛谷P2613有理数取余

    传送门 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...

  2. 洛谷 P2613 【模板】有理数取余

    P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba​,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...

  3. 洛谷——P2613 【模板】有理数取余

    P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...

  4. P2613 【模板】有理数取余 (数论)

    题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...

  5. 题解 P2613 【【模板】有理数取余】

    题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能 ...

  6. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  7. P2613 【模板】有理数取余

    题目描述 给出一个有理数 $c=\frac{a}{b}$ ,求 c mod 19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 aa .第二行,一个整数 bb . 输出格 ...

  8. 数学【p2613】 【模板】有理数取余(费马小定理)

    题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...

  9. Luogu P2613 【模板】有理数取余

    题目链接 \(Click\) \(Here\) 真心没啥东西,只要能\(Get\)到在数字输入的时候按位取模,以及除数也可以直接取模就可以了.(把每个数看做乘法原理和加法原理构造起来的即可.) #in ...

随机推荐

  1. Android连续点击多次事件的实现

    有时候我们需要实现这样的场景,类似进入开发者模式,即多次点击后执行操作. 首先我们先看一个方法: System提供的一个静态方法arraycopy(),我们可以使用它来实现数组之间的复制. publi ...

  2. java新知识系列 一

    内联函数: 所谓内联函数就是指函数在被调用的地方直接展开,编译器在调用时不用像一般函数那样,参数压栈,返回时参数出栈以及资源释放等,这样提高了程序执行速度. 对应Java语言中也有一个关键字final ...

  3. Django Windows环境下部署

    环境准备 本文将介绍如何在Windows系统上部署Django web项目,本次部署基于下面的架构: Windows10 64位+Python3.6+Django1.11+Apache2.4+mod_ ...

  4. 【公众号系列】SAP的新零售

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[公众号系列]SAP的新零售   写在前面 还是 ...

  5. 关于.net中的DataSet和DataTable

    DataSet ds = new DataSet(); ds.Tables.Add(); ds.Tables[].Columns.Add("name"); ds.Tables[]. ...

  6. 【学习】Linux Shell脚本编程

    1.脚本的组成和执行 Linux shell脚本的结构并不复杂,其主要由变量.内部命令以及shell的语法结构和一些函数.其他命令行的程序等组成,以下是一个简单的shell脚本. #!/bin/bas ...

  7. sqlserver中批量导出所有作业或链接脚本

    问题描述: 经常在数据库迁移到另外一台服务器的时候,需要把作业也迁移过去,但是作业有时候好多个,要是一个个编写监本出来很麻烦 今天知道个简单方法批量可以导出sql脚本,顺便做个笔记 解决方法: 1.在 ...

  8. windows10 1903 64位系统

    近日,微软完成并开始推送Windows 10 2019年的第一个重大升级的预览版本,版本号是v1903,命名则是2019年5月更新版. 点击下载windows10

  9. 我的第一个python web开发框架(35)——权限数据库结构设计

    接下来要做的是权限系统的数据库结构设计,在上一章我们了解了权限系统是通过什么来管理好权限的,我们选用其中比较常用的权限系统来实现当前项目管理要求. 下面是我们选择的权限系统关系模型: 从以上关系可以看 ...

  10. php7 的yum源

    yum源默认的版本太低了,手动安装有一些麻烦,想采用Yum更新安装的可以使用下面的方案: 1.检查当前安装的PHP包 yum list installed | grep php 如果有安装的PHP包, ...