已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且
\begin{equation*}
x_{n+1}=
\left\{ \begin{aligned}
x_n+\sin x_n&,x_n\le x_{n-1}\\
x_n+\cos x_n&,x_n> x_{n-1}
\end{aligned} \right.
\end{equation*}
证明:$x_4>x_3$且$0<x_n<\pi$


证明:由定义$x_3=x_2+\cos x_2$
若$ 0<x_2<\dfrac{\pi}{2} $则$x_3>x_2$,又由单调性得$ 1<x_3<\dfrac{\pi}{2} $故$x_4=x_3+\cos x_3>x_3 $
若$ \dfrac{\pi}{2}\le x_2<\pi $则$ x_3\le x_2 $又由单调性得$ \dfrac{\pi}{2}\le x_3< \pi $故$ x_4=x_3+\sin x_3>x_3 $
综上$ x_4>x_3 $
下面用数学归纳法证明$ x_n\in(0,\pi) $
(1)当$ n=2 $时$ x_2\in(0,\pi) $命题成立
(2)假设当$n=k\ge2$时$ x_k\in(0,\pi) $成立,
那么$ n=k+1 $时,由定义
\begin{equation*}
x_{k+1}=
\left\{ \begin{aligned}
x_k+\sin x_k&,x_k\le x_{k-1}\\
x_k+\cos x_n&,x_k> x_{k-1}
\end{aligned} \right.
\end{equation*}
利用分段函数每一段上的单调性易知当$ x_k\in(0,\pi) $时$ x_{k+1}\in(0,\pi) $
综上由(1)(2)结合$x_1\in(0,\pi)$知$x_n\in(0,\pi),n\in N^+$

练习:MT【267】

\begin{equation*}
\textbf{已知}x_1,x_2<\pi,x_{n+1}=x_n+\left\{ \begin{aligned}
sin x_n &,x_n>x_{n+1}\\
cos x_n&,x_n\le x_{n+1}\\
\end{aligned} \right.
\end{equation*}
证明:$ x_n<\dfrac{3\pi}{2}$

注:这个练习题让我想起了遇到这题的那个夏天,地点杭州,时间2014,当时带我们学校的学生去参加数学会组织的暑期竞赛培训,结束后,顺道去睿达看望正在授课的陈计老师,两件事让我记忆尤深,第一件是和陈老师睡一间彻夜长谈的情景,第二件是电梯口遇到苏淳老师。苏老师身为宗师级的老前辈,对后辈一点架子都没有。我当时在电梯口等电梯没认出苏老师(这之前平时看苏老师的书算是二维的苏老师,从没见过三维的苏老师),闲聊搭讪时候自我介绍说我也是数学老师,苏老师竟然对我鞠了一躬,笑着说道:老师好!然后另外一个老师过来和苏老师打招呼,我才知道原来他就是大名鼎鼎的苏淳,我赶忙鞠躬致意。后来听苏老师讲组合,上课娓娓道来,思路清晰,让我感觉醍醐灌顶。

MT【319】分段递推数列的更多相关文章

  1. The Nth Item 南昌网络赛(递推数列,分段打表)

    The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...

  2. Loj 538 递推数列

    Loj 538 递推数列 出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) . 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_ ...

  3. 九度OJ 1081:递推数列 (递归,二分法)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...

  4. HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  5. MT【311】三角递推数列

    已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...

  6. 九度OJ 1081 递推数列 -- 矩阵二分乘法

    题目地址:http://ac.jobdu.com/problem.php?pid=1081 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= ...

  7. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  8. Re.常系数齐次递推

    前言 嗯   我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么..  可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了  要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...

  9. MT【307】周期数列

    (2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...

随机推荐

  1. 解读《德勤2017年全球CIO报告》:顶级CIO的炼成之道

    文|水手 日前,德勤发布了<2016-2017年全球CIO调查报告>.在这份报告中,德勤从影响CIO为企业创造价值的能力的决定因素出发,探索了CIO为企业进行价值创造的方式,同时以CIO的 ...

  2. Android .9.png 的介绍

    概述 .9.PNG是安卓开发里面的一种特殊的图片,这种格式的图片通过ADT自带的编辑工具生成,使用九宫格切分的方法.点九图是一种可拉伸的位图,android会自动调整它的大小,来使图像在充当背景时可以 ...

  3. android viewpage预加载和懒加载问题

    1.本人理解懒加载和预加载问题某种情况下可以归结为一类问题,下面我就说一下我遇到的预加载问题和懒加载问题及解决的相应方法: - [1 ] 预加载问题        描述:我用到了三个fragment. ...

  4. 基础环境系列:MySQL8.0.12

    机型与版本:windows10(64-bits) Mysql环境配置:mysql8.0.12 一.MySQL安装 Mysql的安装有两种方法,一种是通过.msi一种是通过压缩包.穷呢,大家就老实下社区 ...

  5. Nagle 算法

    1. Nagel算法        TCP/IP协议中,无论发送多少数据,总是要在数据前面加上协议头,同时,对方接收到数据,也需要发送ACK表示确认.为了尽可能的利用网络带宽,TCP总是希望尽可能的发 ...

  6. SpringBoot+Maven多模块项目(创建、依赖、打包可执行jar包部署测试)完整流程

    一,创建Maven多模块项目先建立外层父工程         File →new →project  选择Spring Initializr          Next下一步到以下页面 工程结构如下 ...

  7. 注册表修改computer name

    修改windows server的机器名的时候,发现change按钮是disable的. 手动修改不了,用注册表regedit来修改. HKEY_LOCAL_MACHINE\SYSTEM\Curren ...

  8. ThinkPHP中使用聚合查询去重求和

    我使用的是TP5.1 首先去model类里面设置failed条件: 想要的效果: 数据库展示: 代码: eturn self::alias('gr') ->join('gs_staff gs', ...

  9. LeetCode算法题-Maximum Depth of N-ary Tree(Java实现)

    这是悦乐书的第261次更新,第274篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第128题(顺位题号是559).给定n-ary树,找到它的最大深度.最大深度是从根节点到 ...

  10. 1.2 NCE22 By heart

    Some plays are so successful that they run/are performed/ for years on end/successively/in a row/con ...