Reference: https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

  I spent nearly one hour to deduce the vector form of the back propagation. Just in case that I may forget, but need to utilize them, I will write down all the formula here to make a backup.

Structure:

  Standard BP Network with $\displaystyle \lambda$ hidden layers, one input layer and one output layer.

  Activation function: sigmoid.

Notations:

$\displaystyle W^{i+1,i}$, denotes the weight matrix connecting from $i$th layer to $i+1$th layer.

$\displaystyle N^i$, denotes the net input of the $i$th layer.

$\displaystyle A^i$, denotes the activation input of the $i$th layer.

$\displaystyle \delta ^i$, denotes the error of the $i$th layer.

$\displaystyle \epsilon$, denotes the learning rate.

*, stands for element by element multiplication.

(omit), stands for matrix multiplication.

  Specifically,

$\displaystyle X$, denotes the input layer, while equals $\displaystyle A^0$.

$\displaystyle A^{\lambda + 1}$, denotes the output layer.

$\displaystyle Y$, denotes the expected output.

Propagations:

  Forward:

$\displaystyle N^i = W^{i,i-1}A^{i-1}$.

$\displaystyle A^i = \frac{1}{1+e^{-N^i}}$.

  Backward:

$\displaystyle \Delta W^{i+1,i} = \epsilon \delta^{i+1}(A^{i})^{T}$.

$\displaystyle \delta ^i = ((\delta^{i+1})^{T}W^{i+1,i})^{T}*A^{i}*(1-A^{i})$.

$\displaystyle \delta ^{\lambda + 1} = (Y - A^{\lambda + 1})*A^{\lambda + 1}*(1-A^{\lambda + 1})$.

Deduction:

  I am not capable of taking the partial derivative of vector or matrix over vector or matrix, so I derive these formulas by observing the formula for each element in the matrix and extend it to the vector form.

$\displaystyle \Delta W^{\lambda+1,\lambda}_{i,j} = \epsilon (Y_i - A^{\lambda+1}_i)A^{\lambda+1}_i(1-A^{\lambda +1}_i)A^{\lambda}_j$.

  Let's assume $\displaystyle \delta ^{\lambda+1}_{i} := (Y_i - A^{\lambda+1}_i)A^{\lambda+1}_i(1-A^{\lambda +1}_i)$.

$\displaystyle \Delta W^{\lambda,\lambda-1}_{i,j}=\epsilon (\delta^{\lambda+1})^{T}W^{\lambda+1,\lambda}_{col(i)}A_i^{\lambda}(1-A_i^{\lambda})A_j^{\lambda-1}$.

  Let's assume $\displaystyle \delta ^{\lambda}_{i} := (\delta^{\lambda+1})^{T}W^{\lambda+1,\lambda}_{col(i)}A_i^{\lambda}(1-A_i^{\lambda})$.

  The left are reserved for the readers to complete.

[Machine Learning][BP]The Vectorized Back Propagation Algorithm的更多相关文章

  1. CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)

    1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...

  2. Bayesian machine learning

    from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...

  3. 机器学习算法之旅A Tour of Machine Learning Algorithms

    In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...

  4. [GPU] Machine Learning on C++

    一.MPI为何物? 初步了解:MPI集群环境搭建 二.重新认识Spark 链接:https://www.zhihu.com/question/48743915/answer/115738668 马铁大 ...

  5. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  6. Machine Learning—Mixtures of Gaussians and the EM algorithm

    印象笔记同步分享:Machine Learning-Mixtures of Gaussians and the EM algorithm

  7. AUTOML --- Machine Learning for Automated Algorithm Design.

    自动算法的机器学习: Machine Learning for Automated Algorithm Design. http://www.ml4aad.org/ AutoML——降低机器学习门槛的 ...

  8. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  9. machine learning model(algorithm model) .vs. statistical model

    https://www.analyticsvidhya.com/blog/2015/07/difference-machine-learning-statistical-modeling/ http: ...

随机推荐

  1. 郁闷的 IE6/7/8 所遇兼容问题

    IE6,7只支持inline元素设置为inline-block,但不支持block元素转换成inline-block,所以非inline元素在IE6,7下要转换成inline-block,需先转换成i ...

  2. Docker 问题[Warning] IPv4 forwarding is disabled. Networking will not work.

    Docker 问题[Warning] IPv4 forwarding is disabled. Networking will not work. 在使用Dockerfile创建Docker镜像的时候 ...

  3. 3.Sprint 代理对象与原始对象的异常错误

    代码案例分析 Service层添加了注解@Transactional @Service @Transactional public class CustomerService extends Base ...

  4. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表单:复选框(Checkbox)和单选框(Radio)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. ubuntu 文件操作

    linux的文件目录是一棵目录树,默认起始位置在主文件夹(/home/city),里面有若干子文件(视频.图片.下载.桌面等) 一.文件路径(目录操作) 1.绝对路径:从根目录/写起,完整的.详细的描 ...

  6. 《Java周边》IDEA 创建Gradle子项目

    1. 创建Gradle项目 新建项目选择左侧gradle,右侧选择自己jdk版本,勾选java项目,点击Next 写上GroupId组名ArtifactId项目名后点击Next 这里选择使用本地gra ...

  7. .net设置浏览器缓存和跨域的几种方法

    .自定义过滤器属性 public class NoCacheAttribute : FilterAttribute, IActionFilter { public void OnActionExecu ...

  8. Mybatis入门(五)属性名和字段名不一致解决

    在学Mybatis的时候都需要创建一个实体类,但创建实体类的变量必须和数据库的一样,这章就来解决这个有趣的问题 目录: 问题是这样: 输出的结果是: password为空,这就很难受: 解决方法: 第 ...

  9. Centos7 下vmware NAT模式配置网络连接与DNS

    NAT模式配置网络 1.首先查看NAT模式下的网络 从这边可以知道我的vmware下的nat模式的网络是192.168.109.*网段 上图这个网段也可以修改为别的网段 2.NAT模式下的网关 3.配 ...

  10. windowsService 程序

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...