四方定理.

数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示。

我们可以通过计算机验证其在有限范围的正确性。

对于大数,简单的循环嵌套是不适宜的。下面的代码给出了一种分解方案。

请仔细阅读,填写空缺的代码(下划线部分)。

注意:请把填空的答案(仅填空处的答案,不包括题面)存入考生文件夹下对应题号的“解答.txt”中即可。

直接写在题面中不能得分。

int f(int n, int a[], int idx)
{
if(______________) return 1; // 填空1
if(idx==4) return 0; for(int i=(int)sqrt(n); i>=1; i--)
{
a[idx] = i; if(_______________________) return 1; // 填空2
} return 0;
} int main(int argc, char* argv[])
{
for(;;)
{
int number;
printf("输入整数(1~10亿):");
scanf("%d",&number); int a[] = {0,0,0,0}; int r = f(number, a, 0); printf("%d: %d %d %d %d\n", r, a[0], a[1], a[2], a[3]); } return 0;
} a[0]*a[0] + a[1]*a[1] + a[2]*a[2] + a[3]*a[3] == n
f(n, a, idx + 1) == 1
来自网友: 本题满分: 9分 填空1: (3分)
n==0
或者:0==n 填空2: (6分)
f(n-i*i, a, idx+1)
或者:
f(n-i*i, a, idx+1) > 0
f(n-i*i, a, idx+1) == 1

java实现第二届蓝桥杯四方定理的更多相关文章

  1. java实现第二届蓝桥杯地铁换乘(C++)

    地铁换乘. 为解决交通难题,某城市修建了若干条交错的地铁线路,线路名及其所属站名如stations.txt所示. 线1 苹果园 .... 四惠东 线2 西直门 车公庄 .... 建国门 线4 .... ...

  2. java实现第二届蓝桥杯最小公倍数(c++)

    最小公倍数. 为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致. 但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多. 事实上,它是1至6的每个数字的倍数.即1,2,3,4,5,6 ...

  3. java实现第二届蓝桥杯连通问题(C++)

    连通问题. BMP是常见的图像存储格式. 如果用来存黑白图像(颜色深度=1),则其信息比较容易读取. 与之相关的数据: (以下偏移均是从文件头开始) 偏移:10字节, 长度4字节: 图像数据真正开始的 ...

  4. java实现第二届蓝桥杯异或加密法

    异或加密法. 在对文本进行简单加密的时候,可以选择用一个n位的二进制数,对原文进行异或运算. 解密的方法就是再执行一次同样的操作. 加密过程中n位二进制数会循环使用.并且其长度也可能不是8的整数倍. ...

  5. Java实现第九届蓝桥杯全球变暖

    全球变暖 题目描述 你有一张某海域NxN像素的照片,"."表示海洋."#"表示陆地,如下所示: ....... .##.... .##.... ....##. ...

  6. 算法笔记_199:第二届蓝桥杯软件类决赛真题(C语言本科)

    前言:以下代码部分仅供参考,C语言解答部分全部来自网友,Java语言部分部分参考自网友,对于答案的正确性不能完全保证. 试题1 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. ...

  7. 第二届蓝桥杯C++B组国(决)赛真题

    以下代码仅供参考,解答部分来自网友,对于正确性不能保证,如有错误欢迎评论 四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性 ...

  8. Java实现第九届蓝桥杯小朋友崇拜圈

    小朋友崇拜圈 题目描述 班里N个小朋友,每个人都有自己最崇拜的一个小朋友(也可以是自己). 在一个游戏中,需要小朋友坐一个圈, 每个小朋友都有自己最崇拜的小朋友在他的右手边. 求满足条件的圈最大多少人 ...

  9. Java实现第九届蓝桥杯倍数问题

    倍数问题 题目描述 [题目描述] 众所周知,小葱同学擅长计算,尤其擅长计算一个数是否是另外一个数的倍数.但小葱只擅长两个数的情况,当有很多个数之后就会比较苦恼.现在小葱给了你 n 个数,希望你从这 n ...

随机推荐

  1. python 基础知识1

    一.编译型与解释性区别: 编译型:一次性将全部的代码编译成二进制文件.(如:C.C++) 优点:运行效率高 缺点:开发速度慢,不能跨平台. 解释型:当程序运行时,从上至下一行一行的解释成二进制.(如p ...

  2. 曾经你说chrome浏览器天下第一,现在你却说Microsoft edge真香!呸,渣男!!

    曾经你说chrome浏览器天下第一,现在你却说Microsoft edge真香!呸,渣男!! 一个月前我每天打卡搜索的时候,老是有微软新版浏览器的广告.我刚才是内心其实是抵触的,直到我发现了它的奇妙之 ...

  3. docer run 、docker attach 与 docker exec的区别

    进入容器的方式有以下三种: 使用ssh登陆进容器 使用nsenter.nsinit等第三方工具 使用Docker本身提供的工具 最佳方案为使用Docker本身提供的工具 docker run:创建和启 ...

  4. nodejs上使用sql

    1.首先本地要安装mysql, https://www.mysql.com/downloads/. 2.在node中连接mysql,要安装mysql驱动,也就是npm安装mysql模块:npm i m ...

  5. 快手4-5月Java岗面经

    快手面试准备 我的牛客网帖子链接:https://www.nowcoder.com/discuss/429362 一面: 基础知识 1.java基本数据类型(8种) 1.基本数据类型有哪些,各占多少位 ...

  6. Python的第三方web开发框架Django

    1.Django Django是一个基于Python的第三方Web应用开发框架,可以简化Web开发. 官网:https://www.djangoproject.com/ 主要特点: ①采用MVC模型变 ...

  7. 7.2 Go type assertion

    7.2 Go type assertion 类型断言是使用在接口值上的操作. 语法x.(T)被称为类型断言,x代表接口的类型,T代表一个类型检查. 类型断言检查它操作对象的动态类型是否和断言类型匹配. ...

  8. nginx操作目录

    nginx配置文件/conf/nginx.conf 错误日志功能:los/error.log 访问日志功能:logs/access.log 站点服务请求功能配置:html/ 禁止访问功能配置 404页 ...

  9. codis原理及部署_01

    一.codis介绍 Codis是一个分布式Redis解决方案,对于上层的应用来说,连接到Codis Proxy和连接原生的RedisServer没有明显的区别,有部分命令不支持 Codis底层会处理请 ...

  10. xtrabackup手册笔记

    http://www.cnblogs.com/Amaranthus/archive/2014/08/19/3922570.html#_Toc396231219