欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!

反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。

全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架)来解决一个具体的问题。

读者在学习的过程中,有任何的疑问,欢迎加入我们的交流群(扫描文章最后的二维码即可加入),和大家一起讨论!

1.BP算法的推导



图1 一个简单的三层神经网络

图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是“0”类的可能性越大,反之是“1”类的可能性大。

1.1前向传播的计算

为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:

输入的样本为:

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

1.1.1第一层隐藏层的计算



图2 计算第一层隐藏层

1.1.2第二层隐藏层的计算



图3 计算第二层隐藏层

1.1.3输出层的计算



图4 计算输出层

即:

单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。

2.图解BP算法



图5 图解BP算法

我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:

输入的样本为(假设其真实类标为“1”):

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

2.1前向传播

我们首先初始化神经网络的参数,计算第一层神经元:

2.2误差反向传播

接着计算第二层隐藏层的误差项,根据误差项的计算公式有:

最后是计算第一层隐藏层的误差项:

2.3更新参数

上一小节中我们已经计算出了每一层的误差项,现在我们要利用每一层的误差项和梯度来更新每一层的参数,权重W和偏置b的更新公式如下:

通常权重W的更新会加上一个正则化项来避免过拟合,这里为了简化计算,我们省去了正则化项。上式中的 是学习率,我们设其值为0.1。参数更新的计算相对简单,每一层的计算方式都相同,因此本文仅演示第一层隐藏层的参数更新:

3.小结

至此,我们已经完整介绍了BP算法的原理,并使用具体的数值做了计算。在下篇中,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架),敬请期待!有任何疑问,欢迎加入我们一起交流!

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!

一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)的更多相关文章

  1. 一文彻底搞懂CAS实现原理 & 深入到CPU指令

    本文导读: 前言 如何保障线程安全 CAS原理剖析 CPU如何保证原子操作 解密CAS底层指令 小结 朋友,文章优先发布公众号,如果你愿意,可否扫文末二维码关注下? 前言 日常编码过程中,基本不会直接 ...

  2. MySQL 分区表原理及数据备份转移实战

    MySQL 分区表原理及数据备份转移实战 1.分区表含义 分区表定义指根据可以设置为任意大小的规则,跨文件系统分配单个表的多个部分.实际上,表的不同部分在不同的位置被存储为单独的表.用户所选择的.实现 ...

  3. 一文彻底搞懂Java中的环境变量

    一文搞懂Java环境变量 记得刚接触Java,第一件事就是配环境变量,作为一个初学者,只知道环境变量怎样配,在加上各种IDE使我们能方便的开发,而忽略了其本质的东西,只知其然不知其所以然,随着不断的深 ...

  4. 一篇文章彻底搞懂base64编码原理

    开始 在互联网中的每一刻,你可能都在享受着Base64带来的便捷,但对于Base64的基础原理又了解多少?今天这篇文章带领大家了解一下Base64的底层实现. base64是什么东东呢? Base64 ...

  5. TensorFlow系列专题(五):BP算法原理

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 一.反向传播算法简介 二.前馈计算的过程 第一层隐藏层的计算 第 ...

  6. 这一次搞懂SpringBoot核心原理(自动配置、事件驱动、Condition)

    @ 目录 前言 正文 启动原理 事件驱动 自动配置原理 Condition注解原理 总结 前言 SpringBoot是Spring的包装,通过自动配置使得SpringBoot可以做到开箱即用,上手成本 ...

  7. 多层神经网络BP算法 原理及推导

    首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于 ...

  8. BP算法基本原理推导----《机器学习》笔记

    前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神 ...

  9. 机器学习入门学习笔记:(一)BP神经网络原理推导及程序实现

    机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的 ...

随机推荐

  1. 谈谈Vue的递归组件

    2月最后一天,而且还四年一遇,然而本月居然一篇博客没写,有点说不过去.所以,今天就来谈谈Vue的递归组件.我们先来看一个例子: See the Pen 递归组件 by imgss (@imgss) o ...

  2. mysql JOIN查询

    查询左表a,并且关联a表在b表中的关联,如果关联不存在也可以查出左表的,注:只查询a的部分列,和b的部分列 SELECT a.id, b.id as my FROM a LEFT JOIN b ON ...

  3. Git 程序员篇

    关于 Git Git 背后的故事 伟大的作品总是诞生于伟大的时代,正如 Git 同样诞生于一个英雄辈出.极富纷争的年代. 2005 年,Linux 内核开发社区正面临严峻的挑战:他们不能继续使用 Bi ...

  4. python 生成随机数、生成 uuid

    1. 使用 uuid.uuid1 产生一个随机数 2. 在使用 random.sample() 产生一个随机字符串 3. 将两者进行拼接 import uuid import random def r ...

  5. 读书笔记-《Mysql技术内幕》

    MYSQL 技术内幕 Mysql体系 连接池组件 管理服务和工具 SQL接口 查询分析器 优化器 缓冲 插件式存储引擎 物理文件 存储引擎 InnoDB(默认引擎) 支持事务 行锁设计 多版本并发控制 ...

  6. HTML常用标签的使用

    一.常见标签详解 1.<iframe>标签 HTML内联框架元素 <iframe> 表示嵌套的浏览上下文,有效地将另一个HTML页面嵌入到当前页面中.在HTML 4.01中,文 ...

  7. 前端小微团队的Gitlab实践

    疫情期间我感觉整个人懒散了不少,慢慢有意识要振作起来了,恢复到正常的节奏.最近团队代码库从Gerrit迁移到了Gitlab,为了让前端团队日常开发工作有条不紊,高效运转,开发历史可追溯,我也查阅和学习 ...

  8. Unity 相机平移、旋转、缩放

    内容不多,一个脚本,直接上代码 using System.Collections; using System.Collections.Generic; using UnityEngine; publi ...

  9. Java基础 - Date的相关使用(获取系统当前时间)

    前言: 在日常Java开发中,常常会使用到Date的相关操作,如:获取当前系统时间.获取当前时间戳.时间戳按指定格式转换成时间等.以前用到的时候,大部分是去网上找,但事后又很快忘记.现为方便自己今后查 ...

  10. 你知道吗,Flutter内置了10多种Button控件

    注意:无特殊说明,Flutter版本及Dart版本如下: Flutter版本: 1.12.13+hotfix.5 Dart版本: 2.7.0 Flutter内置了10多种Button(按钮)类控件供我 ...