欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!

反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。

全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架)来解决一个具体的问题。

读者在学习的过程中,有任何的疑问,欢迎加入我们的交流群(扫描文章最后的二维码即可加入),和大家一起讨论!

1.BP算法的推导



图1 一个简单的三层神经网络

图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是“0”类的可能性越大,反之是“1”类的可能性大。

1.1前向传播的计算

为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:

输入的样本为:

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

1.1.1第一层隐藏层的计算



图2 计算第一层隐藏层

1.1.2第二层隐藏层的计算



图3 计算第二层隐藏层

1.1.3输出层的计算



图4 计算输出层

即:

单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。

2.图解BP算法



图5 图解BP算法

我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:

输入的样本为(假设其真实类标为“1”):

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

2.1前向传播

我们首先初始化神经网络的参数,计算第一层神经元:

2.2误差反向传播

接着计算第二层隐藏层的误差项,根据误差项的计算公式有:

最后是计算第一层隐藏层的误差项:

2.3更新参数

上一小节中我们已经计算出了每一层的误差项,现在我们要利用每一层的误差项和梯度来更新每一层的参数,权重W和偏置b的更新公式如下:

通常权重W的更新会加上一个正则化项来避免过拟合,这里为了简化计算,我们省去了正则化项。上式中的 是学习率,我们设其值为0.1。参数更新的计算相对简单,每一层的计算方式都相同,因此本文仅演示第一层隐藏层的参数更新:

3.小结

至此,我们已经完整介绍了BP算法的原理,并使用具体的数值做了计算。在下篇中,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架),敬请期待!有任何疑问,欢迎加入我们一起交流!

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!

一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)的更多相关文章

  1. 一文彻底搞懂CAS实现原理 & 深入到CPU指令

    本文导读: 前言 如何保障线程安全 CAS原理剖析 CPU如何保证原子操作 解密CAS底层指令 小结 朋友,文章优先发布公众号,如果你愿意,可否扫文末二维码关注下? 前言 日常编码过程中,基本不会直接 ...

  2. MySQL 分区表原理及数据备份转移实战

    MySQL 分区表原理及数据备份转移实战 1.分区表含义 分区表定义指根据可以设置为任意大小的规则,跨文件系统分配单个表的多个部分.实际上,表的不同部分在不同的位置被存储为单独的表.用户所选择的.实现 ...

  3. 一文彻底搞懂Java中的环境变量

    一文搞懂Java环境变量 记得刚接触Java,第一件事就是配环境变量,作为一个初学者,只知道环境变量怎样配,在加上各种IDE使我们能方便的开发,而忽略了其本质的东西,只知其然不知其所以然,随着不断的深 ...

  4. 一篇文章彻底搞懂base64编码原理

    开始 在互联网中的每一刻,你可能都在享受着Base64带来的便捷,但对于Base64的基础原理又了解多少?今天这篇文章带领大家了解一下Base64的底层实现. base64是什么东东呢? Base64 ...

  5. TensorFlow系列专题(五):BP算法原理

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 一.反向传播算法简介 二.前馈计算的过程 第一层隐藏层的计算 第 ...

  6. 这一次搞懂SpringBoot核心原理(自动配置、事件驱动、Condition)

    @ 目录 前言 正文 启动原理 事件驱动 自动配置原理 Condition注解原理 总结 前言 SpringBoot是Spring的包装,通过自动配置使得SpringBoot可以做到开箱即用,上手成本 ...

  7. 多层神经网络BP算法 原理及推导

    首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于 ...

  8. BP算法基本原理推导----《机器学习》笔记

    前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神 ...

  9. 机器学习入门学习笔记:(一)BP神经网络原理推导及程序实现

    机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的 ...

随机推荐

  1. Leetcode 239题 滑动窗口最大值(Sliding Window Maximum) Java语言求解

    题目链接 https://leetcode-cn.com/problems/sliding-window-maximum/ 题目内容 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧 ...

  2. ASP.NET CORE 启动过程及源码解读

    在这个特殊的春节,大家想必都在家出不了们,远看已经到了回城里上班的日子,但是因为一只蝙蝠的原因导致我们无法回到工作岗位,大家可能有的在家远程办公,有些在家躺着看书,有的是在家打游戏:在这个特殊无聊的日 ...

  3. css实现边框动画效果

    最近写了几个页面都用到css动画,以及很多before,after伪类.在此记录一下成果.css边框循环动画,页面效果如下: 1.沿着边框动画的图形使用before,after伪类写的.当时想用切图来 ...

  4. CSS 实现元素较宽不能被完全展示时将其隐藏

    首发于本人的博客 varnull.cn 遇到一个需求,需要实现的样式是固定宽度的容器里一排显示若干个标签,数量不定,每个标签的长度也不定.当到了某个标签不能被完全展示下时则不显示.大致效果如下,标签只 ...

  5. VMware虚拟机从安装到激活再到创建虚拟机解决黑屏、卡、死机系列问题教程第二篇

    第二篇:在VMware中创建一个虚拟机(黑屏死机卡在最下面简单说一下你就懂了) 1.我们要打开我们已经安装好的VMware,然后点击创建新的虚拟机 2.然后选择自定义 3.下面这个默认,直接下一步 4 ...

  6. 峰哥说技术: 05-Spring Boot条件注解注解

    Spring Boot深度课程系列 峰哥说技术—2020庚子年重磅推出.战胜病毒.我们在行动 05 峰哥说技术  Spring Boot条件注解 @EnableAutoConfiguration开启自 ...

  7. 论JS函数传参时:值传递与引用传递的区别

    什么是值传递:值传递是指在调用函数时将实际参数(实参)复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数. 值传递的总结:也就是说,将实参复制到函数中的这个过程叫值传递 什么是 ...

  8. Nginx之负载均衡配置(二)

    前文我们聊到了nginx作为负载均衡的配置,前端nginx作为调度器调度http或https请求,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/12458159 ...

  9. flask 分页数据显示

    填充一些数据在表中 @blue.route('/pages/') def pages(): # 默认进入这个视图函数 第一页并只显示5条数据 page = request.args.get('page ...

  10. Falsk 路由简析

    添加路由 我们熟知添加路由的方式是装饰器: @app.route('/') def hello_world(): return 'Hello World!' #访问web得到 'Hello World ...