RMQ(倍增法求ST)
解决什么问题:区间查询最值
倍增思想:每次得出结果的范围呈2的幂次增长,有人说相当于二分,目前我觉得相当于线段树的查找.
具体理解看代码:
/*倍增法求ST*/
#include<math.h>
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int main()
{
int n,dp[110][110];
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&dp[i][0]);
/*dp[i][j]=x x就是[i,i+2^j-1]的最大值*/
for(int j=1;j<=log2(n);j++)/* 保证2 ^ j < = n */
for(int i=1;i<=n-(1<<j)+1;i++)/* i+2^j-1<=n -> i<=n-2^j+1 */
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
/*对于所有点 i 由已知u [i,i+2^(j-1)-1] 范围内的最值求出他的二倍范围内的最值
for(int i=1;i<=n;i++)
{
printf("i=%d\n",i);
printf("dp[%d][0]:%d ",i,dp[i][0]);
for(int j=1;j<=log2(n);j++)
if(dp[i][j])
printf("dp[%d][%d]=dp[%d][%d],dp[%d][%d]:%d ",i,j,i,j-1,i+(1<<(j-1)),j-1,dp[i][j]);//i,i+2^j-1
printf("\n");
}
好像确实像二分多一点*/
int l,r,k;
scanf("%d%d",&l,&r);
k=log2(r-l+1);
/* 2^k 为从l开始的查询区间的长度,2^k<r-l+1 -> l<r-2^k+1 */
printf("%d\n",max(dp[l][k],dp[r-(1<<k)+1][k]));
return 0;
}
/*
10
1 2 3 4 5 6 7 8 9 10
*/
RMQ(倍增法求ST)的更多相关文章
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- 用“倍增法”求最近公共祖先(LCA)
1.最近公共祖先:对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.的祖先且x的深度尽可能大. 2.朴素算法:记录下每个节点的父亲,使节点u,v一步一步地向上找 ...
- 树上倍增法求LCA
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...
- 倍增法求LCA(最近公共最先)
对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10, 15和16的最近公共 ...
- 在线倍增法求LCA专题
1.cojs 186. [USACO Oct08] 牧场旅行 ★★ 输入文件:pwalk.in 输出文件:pwalk.out 简单对比时间限制:1 s 内存限制:128 MB n个被自 ...
- poj3264 倍增法(ST表)裸题
打出st表的步骤:1:建立初始状态,2:区间按2的幂从小到大求出值 3:查询时按块查找即可 #include<iostream> #include<cstring> #incl ...
- LCA 在线倍增法 求最近公共祖先
第一步:建树 这个就不说了 第二部:分为两步 分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...
随机推荐
- 【深入理解Java虚拟机 】类加载器的命名空间以及类的卸载
类加载器的命名空间 每个类加载器又有一个命名空间,由其以及其父加载器组成 类加载器的命名空间的作用和影响 每个类加载器又有一个命名空间,由其以及其父加载器组成 在每个类加载器自己的命名空间中不能出现相 ...
- python基础-流程控制语句
所谓流程控制,就是在程序里面设定一些条件判断语句,满足哪条,就执行哪条 #if 单分支 if 条件: 满足条件后执行的代码 #例子 > : print()#结果为666 双分支 if 条件: 满 ...
- 死磕Lambda表达式(二):Lambda的使用
城市就是森林,每一个男人都是猎手,每一个女人都是陷阱.--<三体> 在哪使用Lambda表达式? 在上一篇文章(传送门)中介绍了Lambda表达式的基本语法,其中的举了一个Lambda表达 ...
- 基于google earth engine的中等分辨率全国水质反演
我写博客的工作不像论文,假大空,我们直接上干货,之所以取一个这么大的名字,当然是我们能做到的... 不多说,我们对全国水体进行水质参数反演,不用MODIS,太粗,我们直接用哨兵,这样就可以直接做到大型 ...
- ASP.NET CORE 管道模型及中间件使用解读
说到ASP.NET CORE 管道模型不得不先来看看之前的ASP.NET 的管道模型,两者差异很大,.NET CORE 3.1 后完全重新设计了框架的底层,.net core 3.1 的管道模型更加灵 ...
- PostgreSQL与MySQL对比
都属于开放源码的一员,性能和功能都在高速地提高和增强.MySQL AB的人们和PostgreSQL的开发者们都在尽可能地把各自的数据库改得越来越好,所以对于任何商业数据库使用其中的任何一个都不能算是错 ...
- H5多列布局
多列布局 基本概念 1.多列布局类似报纸或杂志中的排版方式,上要用以控制大篇幅文本. 2.跨列属性可以控制横跨列的数量 /*列数*/ -webkit-column-count: 3; /*分割线*/ ...
- 利用virtualenvwrapper创建虚拟环境出现错误“/usr/bin/python: No module named virtualenvwrapper”
Linux:CentOS7 python: 系统默认python版本2.7,利用python启动 自己安装python版本3.8,利用python3启动 问题描述: 在上述环境中利用virtualen ...
- Django进行数据迁移时,报错:(1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '(6) NOT NULL)' at line 1")
进行数据迁移时: 第一步: 命令:python manage.py makemigrations 在对应的应用里面的migrations文件夹中产生了一个0001_initial.py文件 第二步:执 ...
- vue开发路由相关基础知识和笔记
路由实现:hash模式 和 history模式 hash模式: 概述 在浏览器中符号"#",#以及#后面的字符称之为hash,用window.location.hash读取: 特点 ...