PyTorch 实战-用 Numpy 热身
Numpy provides an n-dimensional array object, and many functions for manipulating these arrays. Numpy is a generic framework for scientific
computing; it does not know anything about computation graphs, or deep learning, or gradients. However we can easily use numpy to fit a two-layer network to random data by manually implementing the forward and backward passes through the network using numpy
operations:
# -*- coding: utf-8 -*-
import numpy as np
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)
# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)
learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.dot(w1)
h_relu = np.maximum(h, 0)
y_pred = h_relu.dot(w2)
# Compute and print loss
loss = np.square(y_pred - y).sum()
print(t, loss)
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy()
grad_h[h < 0] = 0
grad_w1 = x.T.dot(grad_h)
# Update weights
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
更多教程:http://www.tensorflownews.com/
PyTorch 实战-用 Numpy 热身的更多相关文章
- 深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...
- PyTorch 实战:计算 Wasserstein 距离
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...
- 参考《深度学习之PyTorch实战计算机视觉》PDF
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- pytorch实战(一)hw1——李宏毅老师作业1
任务描述:利用前9小时数据,预测第10小时的pm2.5的数值,回归任务 kaggle地址:https://www.kaggle.com/c/ml2020spring-hw1 训练集为: 12个月*20 ...
- pytorch实战(7)-----卷积神经网络
一.卷积: 卷积在 pytorch 中有两种方式: [实际使用中基本都使用 nn.Conv2d() 这种形式] 一种是 torch.nn.Conv2d(), 一种是 torch.nn.function ...
- PyTorch实战:经典模型LeNet5实现手写体识别
在上一篇博客CNN核心概念理解中,我们以LeNet为例介绍了CNN的重要概念.在这篇博客中,我们将利用著名深度学习框架PyTorch实现LeNet5,并且利用它实现手写体字母的识别.训练数据采用经典的 ...
- PyTorch 实战-张量
Numpy 是一个非常好的框架,但是不能用 GPU 来进行数据运算. Numpy is a great framework, but it cannot utilize GPUs to acceler ...
- pytorch实战(二)hw2——预测收入是否高于50000,分类问题
代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd. ...
随机推荐
- LeetCode python实现题解(持续更新)
目录 LeetCode Python实现算法简介 0001 两数之和 0002 两数相加 0003 无重复字符的最长子串 0004 寻找两个有序数组的中位数 0005 最长回文子串 0006 Z字型变 ...
- ef01
1.ef简介 学习地址: https://www.entityframeworktutorial.net/ orm:Object relations mapping 对象关系映射 实体类中的属性与数据 ...
- php表单提交后再后退 内容则默认清空的解决方法
转载原文地址: http://www.jquerycn.cn/a_14422 在session_start()之后,字符输出之前加上header("Cache-control: privat ...
- direction和writing-mode的介绍
direction介绍 属性值和兼容都很好 CSSdirection属性简单好记,属性值少,兼容性好,关键时候省心省力,是时候给大家宣传宣传,不要埋没了人家的特殊技能. Chrome Safari F ...
- Let’s Encrypt https证书安装
我的博客: https://www.seyana.life/post/15 现在已经有很多的免费ssl证书提供商,国内的也有, 不过国内政策要求还要把key给他们, 我们还是用Let's Encryp ...
- python框架Django实战商城项目之用户模块创建
创建用户APP 整个项目会存在多个应用,需要存放在一个单独的文件包了,所以新建一个apps目录,管理所有子应用. 在apps包目录下穿件users应用 python ../../manage.py s ...
- tfgan折腾笔记(三):核心函数详述——gan_loss族
gan_loss族的函数有: 1.gan_loss: 函数原型: def gan_loss( # GANModel. model, # Loss functions. generator_loss_f ...
- 深入学习JAVA注解-Annotation(学习过程)
JAVA注解-Annotation学习 本文目的:项目开发过程中遇到自定义注解,想要弄清楚其原理,但是自己的基础知识不足以支撑自己去探索此问题,所以先记录问题,然后补充基础知识,然后解决其问题.记录此 ...
- python http代理支持 https
首先需要2个软件来抓包. fiddler : http 代理软件可以分析,抓包,重放. wireshark : 全能抓包分析软件. RFC 提供了非常好的设计描述. https://tools.iet ...
- php 防注入
a. 打开magic_quotes_gpc或使用addslashes()函数 当php.ini里的 magic_quotes_gpc 为On 时. 提交的变量中所有的 ' (单引号), " ...