Numpy provides an n-dimensional array object, and many functions for manipulating these arrays. Numpy is a generic framework for scientific
computing; it does not know anything about computation graphs, or deep learning, or gradients. However we can easily use numpy to fit a two-layer network to random data by manually implementing the forward and backward passes through the network using numpy
operations:

# -*- coding: utf-8 -*-
import numpy as np # N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10 # Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out) # Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out) learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.dot(w1)
h_relu = np.maximum(h, 0)
y_pred = h_relu.dot(w2) # Compute and print loss
loss = np.square(y_pred - y).sum()
print(t, loss) # Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy()
grad_h[h < 0] = 0
grad_w1 = x.T.dot(grad_h) # Update weights
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2

更多教程:http://www.tensorflownews.com/

PyTorch 实战-用 Numpy 热身的更多相关文章

  1. 深度学习之PyTorch实战(1)——基础学习及搭建环境

    最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...

  2. PyTorch 实战:计算 Wasserstein 距离

    PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...

  3. 参考《深度学习之PyTorch实战计算机视觉》PDF

    计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...

  4. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  5. pytorch实战(一)hw1——李宏毅老师作业1

    任务描述:利用前9小时数据,预测第10小时的pm2.5的数值,回归任务 kaggle地址:https://www.kaggle.com/c/ml2020spring-hw1 训练集为: 12个月*20 ...

  6. pytorch实战(7)-----卷积神经网络

    一.卷积: 卷积在 pytorch 中有两种方式: [实际使用中基本都使用 nn.Conv2d() 这种形式] 一种是 torch.nn.Conv2d(), 一种是 torch.nn.function ...

  7. PyTorch实战:经典模型LeNet5实现手写体识别

    在上一篇博客CNN核心概念理解中,我们以LeNet为例介绍了CNN的重要概念.在这篇博客中,我们将利用著名深度学习框架PyTorch实现LeNet5,并且利用它实现手写体字母的识别.训练数据采用经典的 ...

  8. PyTorch 实战-张量

    Numpy 是一个非常好的框架,但是不能用 GPU 来进行数据运算. Numpy is a great framework, but it cannot utilize GPUs to acceler ...

  9. pytorch实战(二)hw2——预测收入是否高于50000,分类问题

    代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd. ...

随机推荐

  1. android使用giflib加载gif

    转载请标明出处:https:////www.cnblogs.com/tangZH/p/12356915.html 背景不多说,反正ndk加载gif比java上加载gif好很多很多,主要体现在内存占用与 ...

  2. openpyxl(python操作Excel)

    一.安装 >>> pip install openpyxl import openpyxl 二.常用操作 1.创建与保存一个工作簿 wb = openpyxl.Workbook() ...

  3. python爬虫-scrapy日志

    1.scrapy日志介绍 Scrapy的日志系统是实现了对python内置的日志的封装 scrapy也使用python日志级别分类 logging.CRITICAL logging.ERROE log ...

  4. 将mysql数据库集成到idea中

    将mysql数据库集成到idea中

  5. HttpClientFactory的套路,你知多少?

    背景 ASP.NET Core 在 2.1 之后推出了具有弹性 HTTP 请求能力的 HttpClient 工厂类 HttpClientFactory. 替换的初衷还是简单摆一下: ① using(v ...

  6. Docker实战之Kafka集群

    1. 概述 Apache Kafka 是一个快速.可扩展的.高吞吐.可容错的分布式发布订阅消息系统.其具有高吞吐量.内置分区.支持数据副本和容错的特性,适合在大规模消息处理场景中使用. 笔者之前在物联 ...

  7. Java常见的类——Number和Math类

    但我们使用数据时,我们一般使用内置数据类型,列如:byte,int,long,double等,但是在实际开发过程中,我们一般遇到的是需要使用对象,这时,我们就可以使用 Java 专门为每一个数据类型提 ...

  8. CF 1305E. Kuroni and the Score Distribution

    题目大意:题目给定两个数n和m(1<=n<=5000,0<=m<=1e9)要求构造一个数列A,A中元素 大于等于1,小于等于1e9且满足严格递增 满足ai+aj=ak的(i,j ...

  9. js获取当前日期是一年中的第几天

    js获取当前日期为一年中的第几天 const currentYear = new Date().getFullYear().toString(); // 今天减今年的第一天(xxxx年01月01日) ...

  10. js对象中关于this关键字的作用

    前两天在前端群看到群友问的一个问题,问题如下: var Name = 'window'; var obj = { Name:'obj字符串', getName:function(){ console. ...