链接

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

模板题,题意很明了,直接测板子。

#include<cstdio>
#include<cstring>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=200+5; struct Edge
{
int from,to,cap,flow;
Edge() {}
Edge(int f,int t,int c,int flow):from(f),to(t),cap(c),flow(flow) {}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int cur[maxn];
int d[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=1; i<=n; i++)
G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;
d[s]=0;
Q.push(s);
vis[s]=true;
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
Q.push(e.to);
d[e.to]= 1+d[x];
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0)
return a;
int flow=0,f;
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow) ))>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow -=f;
flow+=f;
a-=f;
if(a==0)
break;
}
}
return flow;
} int Maxflow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
} DC; int main()
{
int n,m,t;
while(scanf("%d%d",&m,&n)==2){
DC.init(n,1,n);
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
DC.AddEdge(u,v,w);
}
printf("%d\n",DC.Maxflow());
}
return 0;
}

网络流--最大流--POJ 1273 Drainage Ditches的更多相关文章

  1. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  2. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  3. POJ 1273 Drainage Ditches(网络流,最大流)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  4. poj 1273 Drainage Ditches 网络流最大流基础

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 59176   Accepted: 2272 ...

  5. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  6. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  9. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

随机推荐

  1. vector数组的相关知识

    Vector 类实现了一个动态数组.和 ArrayList 很相似,但是两者是不同的: Vector 是同步访问的. Vector 包含了许多传统的方法,这些方法不属于集合框架. Vector 主要用 ...

  2. Windows10操作技巧系列——删除最常用,最常访问,快速访问记录

    Win10除了有传统意义上的,网络历史记录外,还包含了两种本地文件浏览记录,分别是资源管理器中的“快速访问”记录,和开始菜单以及任务栏中的“最常用”“最近”“最常访问”等“最记录”. 资源管理器中的“ ...

  3. vue技术栈进阶(01.使用vue-cli3创建项目)

    使用vue-cli3创建一个项目 1) 使用Vue UI创建.管理项目 1.安装依赖的脚手架包. 2.命令行中输入vue ui 即可以打开可视化界面 可视化界面: 2)项目结构目录整理 3)基本配置 ...

  4. rdd简单操作

    1.原始数据 Key value Transformations(example: ((1, 2), (3, 4), (3, 6)))  2. flatMap测试示例 object FlatMapTr ...

  5. 《深入理解 Java 虚拟机》读书笔记:晚期(运行期)优化

    正文 在部分商用虚拟机(Sun HotSpot.IBM J9)中,Java 程序最初是通过解释器进行解释执行的,当虚拟机发现某个方法或代码块的运行特别频繁时,就会把这些代码认定为"热点代码& ...

  6. java消除 list重复值及交集,并集,差集

    消除 list重复值 Java代码  public void removeDuplicate(List list) { HashSet h = new HashSet(list); list.clea ...

  7. dubbo(三):负载均衡实现解析

    dubbo作为分布式远程调用框架,要保证的点很多,比如:服务注册与发现.故障转移.高性能通信.负载均衡等等! 负载均衡的目的是为了特定场景下,能够将请求合理地平分到各服务实例上,以便发挥所有机器的叠加 ...

  8. Python递归爬取头条用户的所有文章、视频

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  9. 【Jenkins】插件更改国内源

    最近调试脚本,本机安装了Jenkins,但是安装插件时一直失败.更改升级站点也不生效,究其原因是因为default.json中插件下载地址还https://updates.jenkins.io,升级站 ...

  10. 4. js

    1.) ~   操作符 console.log(~-2)  // 1 console.log(~-1)  // 0 console.log(~0)  // -1 console.log(~1)  // ...