#Week7 Neural Networks : Learning
一、Cost Function and Backpropagation
神经网络的损失函数:
\]

这个cost function是在logistic regression基础上演变而来,只是神经网络有很多输出结点,而logistic regression只有一个输出结点,所以这个cost function只是把所有的K个输出结点的损失函数进行累加。
得到cost function后,为了寻找使得\(J(\theta)\)最小的那组参数\(\theta\),我们需要知道\(J(\theta)\)关于每个\(\theta\)的偏导数,而后向传播算法可以帮助我们计算偏导数:

对于每个训练样本,先利用forward propagation计算每一层的\(a\):

接着利用样本真实标签\(y^{(t)}\)计算最后一层的误差值;
之后从右向左计算每一层(输入层除外)的误差:

这样每个样本一次正向、一次反向来更新误差矩阵:

向量化表示:

最后,就可以得到偏导数:


二、Backpropagation in Pratice
为了使用fminunc等高级的优化方法来求得cost function的最小值,所以将\(\theta\)这个矩阵展成向量传入fminunc,完成后可以通过reshape从向量中提取\(\theta^{(1)}、\theta^{(2)}\)等:

为了确保我们使用Backpropagation求得的偏导数的正确性,可以使用Gradient Checking(很慢)来检验:
根据偏导数定义:
\]
\]
通过将这种方式计算的偏导数与之前Backpropagation求得的偏导数比较,即可得知Backpropagation的正确性。
之前在Linear Regression和Logistic Regression,我们可以用全0来初始化\(\theta\),但在神经网络中,这样做会有问题,所以采用随机初始化:

最后,从整体捋一遍流程:
1、选择网络结构:

2、训练神经网络:
对每一个训练样本:

#Week7 Neural Networks : Learning的更多相关文章
- Machine Learning - 第5周(Neural Networks: Learning)
The Neural Network is one of the most powerful learning algorithms (when a linear classifier doesn't ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...
- Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning
原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Andrew Ng机器学习 四:Neural Networks Learning
背景:跟上一讲一样,识别手写数字,给一组数据集ex4data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个 ...
- Ng第九课:神经网络的学习(Neural Networks: Learning)
9.1 代价函数 9.2 反向传播算法 9.3 反向传播算法的直观理解 9.4 实现注意:展开参数 9.5 梯度检验 9.6 随机初始化 9.7 综合起来 9.8 自主驾驶 9.1 ...
- 斯坦福大学公开课机器学习: neural networks learning - autonomous driving example(通过神经网络实现自动驾驶实例)
使用神经网络来实现自动驾驶,也就是说使汽车通过学习来自己驾驶. 下图是通过神经网络学习实现自动驾驶的图例讲解: 左下角是汽车所看到的前方的路况图像.左上图,可以看到一条水平的菜单栏(数字4所指示方向) ...
- MachineLearning Exercise 4 :Neural Networks Learning
nnCostFunction 消耗公式: a1 = [ones(m,) X]; z2 = a1*Theta1'; pre = sigmoid(a1*Theta1'); a2 = [ones(m,) p ...
- 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning
课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...
- Coursera 机器学习 第5章 Neural Networks: Learning 学习笔记
5.1节 Cost Function神经网络的代价函数. 上图回顾神经网络中的一些概念: L 神经网络的总层数. sl 第l层的单元数量(不包括偏差单元). 2类分类问题:二元分类和多元分类. 上 ...
随机推荐
- java对于目录下的相关文件的单词操作
写入文件的目录.代码通过找目录下的文件,进行相关函数的操作.如果目录下面包含子目录.代码设有调用递归的方法,在寻找子目录下的文件 在进行相关的函数操作.函数主要是按用户输入的个数要求输出文件中出现次数 ...
- Alpha测试与Beta测试
粗略说一下Alpha测试与beta测试 1.Alpha测试 α测试是由一个用户在开发环境下进行的测试,也可以是公司内部的用户在模拟实际操作环境下进行的测试.α测试的目的是评价软件产品的功能.局域化.可 ...
- Python 1基础语法二(标识符、关键字、变量和字符串)
一.标识符 标识符就是程序员自己命名的变量名.名字需要有见名知义的效果,不要随意起名 :比如 a=1 a是个变量,a这个变量名属于标识符 1 company = '小米 2 employeeNum = ...
- HAproxy shell脚本安装
#!/bin/bash #需要lua-..tar.gz在家目录下 # 编译安装lua #安装编译环境需要的包 yum -y install gcc openssl-devel pcre-devel s ...
- NumPy学习2:基本运算
数组相减: a = array([20, 30, 40, 50])print ab = arange(4)print bc = a-bprint c 结果: [20 30 40 50][0 1 2 3 ...
- Docker命名空间
命名空间 命名空间( namespace )是 Linux 内核的一个强大特性,为容器虚拟化的实现带来极大便利,利用这 特性,每个容器都可以拥有自己单独的命名空间,运行在其中的应用都像是在独立的操作系 ...
- 让图片适合在静态文本控件窗口大小 MFC
1.加入 IDC_STATIC1 静态文本控件. 2.为文本控件添加 STATIC 型变量 3.在OnInitDialog函数中添加以下代码 //设置该静态控件为显示位图的 m_bitmap.Modi ...
- 【Java】手动编写第一个Java程序,HelloWorld!
第一个Java程序HelloWorld! 环境前提:确保你已经配置好了JDK8的环境变量,和本体安装 打开文本编辑器,这里我使用的是EditPlus 编写代码: public class Hello{ ...
- vuepress+gitee 构建在线项目文档
目录 快速入门 在现有vue项目中安装本地开发依赖vuepress 在现有vue项目根目录下创建docs目录 创建并配置文档首页内容 运行,查看效果 可能会出现vue和vue-server-rende ...
- react性能优化最佳实践
1.PureComponent 的使用场景 PureComponent 和 Component 的区别是,PureComponent 自带 shouldComponentUpdate 生命周期函数,会 ...