import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageChops
from skimage import color,data,transform,io #获取所有数据文件夹名称
fileList = os.listdir("F:\\data\\flowers")
trainDataList = []
trianLabel = []
testDataList = []
testLabel = [] #读取每一种花的文件
for j in range(len(fileList)):
data = os.listdir("F:\\data\\flowers\\"+fileList[j])
#取每一种花四分之一的数据作为测试数据集
testNum = int(len(data)*0.25)
#把每种花的图片进行testNum次乱序处理
while(testNum>0):
np.random.shuffle(data)
testNum -= 1
#把每种花经过乱序后的四分之三当作训练集
trainData = np.array(data[:-(int(len(data)*0.25))])
#把每种花经过乱序后的四分之一当作测试集
testData = np.array(data[-(int(len(data)*0.25)):])
#从上面选出来的训练集中逐张读取出对应的图片
for i in range(len(trainData)):
#其中这些图片都要满足jpg格式的
if(trainData[i][-3:]=="jpg"):
#读取一张jpg图片
image = io.imread("F:\\data\\flowers\\"+fileList[j]+"\\"+trainData[i])
#把这张图片变成64*64大小的图片
image=transform.resize(image,(64,64))
#保存改变大小的图片到trainDataList列表
trainDataList.append(image)
#保存这张图片的标签到trianLabel列表
trianLabel.append(int(j))
#随机生成一个角度,这个角度的范围在顺时针90度和逆时针90度之间
angle = np.random.randint(-90,90)
#然后把上面那张64*64大小的图片随机旋转angle个角度
image =transform.rotate(image, angle)
#把旋转得到的新图片再变成64*64大小的,因为旋转会改变一张图片的大小
image=transform.resize(image,(64,64))
#把旋转后并且大小是64*64的图片保存到trainDataList列表
trainDataList.append(image)
#把旋转后并且大小是64*64的图片对应的标签保存到trianLabel列表
trianLabel.append(int(j))
#逐张读取每种花的测试图片
for i in range(len(testData)):
#选取的图片要满足jpg格式的
if(testData[i][-3:]=="jpg"):
#读取一张图片
image = io.imread("F:\\data\\flowers\\"+fileList[j]+"\\"+testData[i])
#改变这张图片的大小为64*64
image=transform.resize(image,(64,64))
#把改变后的图片保存到testDataList列表中
testDataList.append(image)
#把这张图片对应的标签保存到testLabel列表中
testLabel.append(int(j))
print("图片数据读取完了...")

#打印训练集和测试数据集以及它们对应标签的规模
print(np.shape(trainDataList))
print(np.shape(trianLabel))
print(np.shape(testDataList))
print(np.shape(testLabel))

#保存训练集和测试数据集以及它们对应标签到磁盘
np.save("G:\\trainDataList",trainDataList)
np.save("G:\\trianLabel",trianLabel)
np.save("G:\\testDataList",testDataList)
np.save("G:\\testLabel",testLabel)
print("数据处理完了...")

import numpy as np
from keras.utils import to_categorical #将训练数据集和测试数据集对应的标签转变为one-hot编码
trainLabel = np.load("G:\\trianLabel.npy")
testLabel = np.load("G:\\testLabel.npy")
trainLabel_encoded = to_categorical(trainLabel)
testLabel_encoded = to_categorical(testLabel)
np.save("G:\\trianLabel",trainLabel_encoded)
np.save("G:\\testLabel",testLabel_encoded)
print("转码类别写盘完了...")

import random
import numpy as np trainDataList = np.load("G:\\trainDataList.npy")
trianLabel = np.load("G:\\trianLabel.npy")
print("数据加载完了...") trainIndex = [i for i in range(len(trianLabel))]
random.shuffle(trainIndex)
trainData = []
trainClass = []
for i in range(len(trainIndex)):
trainData.append(trainDataList[trainIndex[i]])
trainClass.append(trianLabel[trainIndex[i]])
print("训练数据shuffle完了...") np.save("G:\\trainDataList",trainData)
np.save("G:\\trianLabel",trainClass)
print("训练数据写盘完毕...")

X = np.load("G:\\trainDataList.npy")
Y = np.load("G:\\trianLabel.npy")
print(np.shape(X))
print(np.shape(Y))

import random
import numpy as np testDataList = np.load("G:\\testDataList.npy")
testLabel = np.load("G:\\testLabel.npy") testIndex = [i for i in range(len(testLabel))]
random.shuffle(testIndex)
testData = []
testClass = []
for i in range(len(testIndex)):
testData.append(testDataList[testIndex[i]])
testClass.append(testLabel[testIndex[i]])
print("测试数据shuffle完了...") np.save("G:\\testDataList",testData)
np.save("G:\\testLabel",testClass)
print("测试数据写盘完毕...")

X = np.load("G:\\testDataList.npy")
Y = np.load("G:\\testLabel.npy")
print(np.shape(X))
print(np.shape(Y))
print(np.shape(testData))
print(np.shape(testLabel))

import tensorflow as tf
from random import shuffle INPUT_NODE = 64*64
OUT_NODE = 5
IMAGE_SIZE = 64
NUM_CHANNELS = 3
NUM_LABELS = 5 #第一层卷积层的尺寸和深度
CONV1_DEEP = 16
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 32
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 512 def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer1/weights1', conv1_weights)
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
tf.summary.histogram('convLayer1/bias1', conv1_biases)
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer1/conv1', conv1)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
tf.summary.histogram('ConvLayer1/relu1', relu1)
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer1/pool1', pool1)
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer2/weights2', conv2_weights)
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
tf.summary.histogram('convLayer2/bias2', conv2_biases)
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer2/conv2', conv2)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
tf.summary.histogram('ConvLayer2/relu2', relu2)
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer2/pool2', pool2)
#变型
pool_shape = pool2.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool2,[-1,nodes]) #全连接层
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit
import time
import keras
import numpy as np
from keras.utils import np_utils X = np.load("G:\\trainDataList.npy")
Y = np.load("G:\\trianLabel.npy")
print(np.shape(X))
print(np.shape(Y))
print(np.shape(testData))
print(np.shape(testLabel)) batch_size = 10
n_classes=5
epochs=16#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75 x=tf.placeholder(tf.float32,[None,64,64,3])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)
#加载测试数据集
test_X = np.load("G:\\testDataList.npy")
test_Y = np.load("G:\\testLabel.npy")
back = 64
ro = int(len(test_X)/back) #调用神经网络方法
pred=inference(x,1,"regularizer")
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y)) # 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost) #将预测label与真实比较
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()
#将tensorflow变量实例化
init=tf.global_variables_initializer()
start_time = time.time() with tf.Session() as sess:
sess.run(init)
#保存tensorflow参数可视化文件
writer=tf.summary.FileWriter('F:/Flower_graph', sess.graph)
for i in range(epochs):
for j in range(batch_num):
offset = (j * batch_size) % (Y.shape[0] - batch_size)
# 准备数据
batch_data = X[offset:(offset + batch_size), :]
batch_labels = Y[offset:(offset + batch_size), :]
sess.run(optimizer, feed_dict={x:batch_data,y:batch_labels})
result=sess.run(merged, feed_dict={x:batch_data,y:batch_labels})
writer.add_summary(result, i)
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_data,y:batch_labels})
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))
writer.close()
print("########################训练结束,下面开始测试###################")
for i in range(ro):
s = i*back
e = s+back
test_accuracy = sess.run(accuracy,feed_dict={x:test_X[s:e],y:test_Y[s:e]})
print("step:%d test accuracy = %.4f%%" % (i,test_accuracy*100))
print("Final test accuracy = %.4f%%" % (test_accuracy*100)) end_time = time.time()
print('Times:',(end_time-start_time))
print('Optimization Completed')

吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别的更多相关文章

  1. 吴裕雄--天生自然TensorFlow高层封装:使用TFLearn处理MNIST数据集实现LeNet-5模型

    # 1. 通过TFLearn的API定义卷机神经网络. import tflearn import tflearn.datasets.mnist as mnist from tflearn.layer ...

  2. 吴裕雄--天生自然TensorFlow高层封装:使用TensorFlow-Slim处理MNIST数据集实现LeNet-5模型

    # 1. 通过TensorFlow-Slim定义卷机神经网络 import numpy as np import tensorflow as tf import tensorflow.contrib. ...

  3. 吴裕雄--天生自然TensorFlow高层封装:Estimator-自定义模型

    # 1. 自定义模型并训练. import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist i ...

  4. 吴裕雄--天生自然TensorFlow高层封装:Estimator-DNNClassifier

    # 1. 模型定义. import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  5. 吴裕雄--天生自然TensorFlow高层封装:Keras-TensorFlow API

    # 1. 模型定义. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist_ ...

  6. 吴裕雄--天生自然TensorFlow高层封装:Keras-RNN

    # 1. 数据预处理. from keras.layers import LSTM from keras.datasets import imdb from keras.models import S ...

  7. 吴裕雄--天生自然TensorFlow高层封装:Keras-CNN

    # 1. 数据预处理 import keras from keras import backend as K from keras.datasets import mnist from keras.m ...

  8. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络水果图片识别

    #-*- coding:utf- -*- import time import keras import skimage import numpy as np import tensorflow as ...

  9. 吴裕雄--天生自然TensorFlow高层封装:Keras-多输入输出

    # 1. 数据预处理. import keras from keras.models import Model from keras.datasets import mnist from keras. ...

随机推荐

  1. C语言实现整数转字符串

    #include <stdio.h> void intToString(int N,char arr[]){ //仅支持有符号4字节的int类型,范围-2147483648 - 21474 ...

  2. Less(7)

    1.先判断注入类型 (1)首先看到要求,要求传一个ID参数,并且要求是数字型的:?id=1 (2)再输入:?id=1 and 1=1 (3)输入:?id=1 and 1=2 因为(2)(3)没有变化, ...

  3. 利用docker安装gitlab

    安装docker 安装 virtualbox 下载 dockertoolbox并安装 官网的服务器一直连不上, 幸亏还有这个 https://get.daocloud.io/toolbox/ 比 ht ...

  4. F 乘法(第k大问题)(二分)

    题:https://ac.nowcoder.com/acm/contest/3979/F 题意:俩个序列俩俩相乘得到n*m个数,求第k大的数是哪个 分析:二分 #include<bits/std ...

  5. 1年6亿美元!Uber小费功能或引行业变革

    当一个行业由稚嫩走向成熟,必然要在大方向上面对两个选择--一是继续在行业内深挖,二是不断向外围扩张.就像电商行业原本只是纯粹的交易中介形态,现在既不断深挖垂直电商新模式,又继续拓展新业务试图玩转跨界. ...

  6. embed标签属性

    embed标签属性   (一).基本语法: embed src=url 说明:embed可以用来插入各种多媒体,格式可以是 Midi.Wav.AIFF.AU.MP3等等,    Netscape及新版 ...

  7. 吴裕雄--天生自然C语言开发:函数

    return_type function_name( parameter list ) { body of the function } /* 函数返回两个数中较大的那个数 */ int max(in ...

  8. 熊海CMS_1.0 代码审计

    熊海是一款小型的内容管理系统,1.0版本是多年前的版本了,所以漏洞还是比较多的,而且审计起来难度不大,非常适合入门,所以今天我进行这款cms的代码审计.程序安装后使用seay源代码审计系统打开,首先使 ...

  9. 客户端和后台交互日期注意点 sqlite日期字段使用Date类型的情况下

    不要直接传递时间类型 一般把时间格式化字符串后传递 不要传递Date().getTime() 毫秒数  非要使用的话需要在后台处理 传递的毫秒数 - TimeZone.getDefault().get ...

  10. IDEA+selenium3+火狐/谷歌驱动 JAVA初步环境搭建 笔记

    0 环境 系统环境:win7 selenium驱动 谷歌浏览器以及驱动 火狐浏览器以及驱动 1 驱动地址的下载 1.1 selenium jar包 https://www.seleniumhq.org ...