P3157 [CQOI2011]动态逆序对

题目描述

对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数。给\(1\)到\(n\)的一个排列,按照某种顺序依次删除\(m\)个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

输入输出格式

输入格式:

输入第一行包含两个整数\(n\)和\(m\),即初始元素的个数和删除的元素个数。以下\(n\)行每行包含一个\(1\)到\(n\)之间的正整数,即初始排列。以下\(m\)行每行一个正整数,依次为每次删除的元素。

输出格式:

输出包含\(m\)行,依次为删除每个元素之前,逆序对的个数。

说明

\(N\le 100000,M\le 50000\)


万年以前树套树怎么都是60pts,今天终于决定进行CDQ分治水过去。

每个元素安排三个属性为\(P_i,A_i,D_i\)分别代表在原序列的位置,元素值和被删时间。

然后我们统计一下\(P_i < P_j,A_i>A_j,D_i<D_j\)的个数。

然后我调了半个多小时...

终于弄明白\(P_i > P_j,A_i<A_j,D_i<D_j\)也要统计...


Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=1e5+10;
struct node{int a,b,p;}sq[N];
int n,m,s[N];
ll ans[N];
void add(int x,int d){while(x<=m)s[x]+=d,x+=x&-x;}
int ask(int x){int sum=0;while(x)sum+=s[x],x-=x&-x;return sum;}
bool cmp1(node n1,node n2){return n1.a>n2.a;}
bool cmp2(node n1,node n2){return n1.a<n2.a;}
void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>1;
CDQ(l,mid),CDQ(mid+1,r);
std::sort(sq+l,sq+r+1,cmp1);
for(int i=l;i<=r;i++)
{
if(sq[i].p<=mid) add(sq[i].b,1);
else ans[sq[i].b]+=1ll*(ask(m)-ask(sq[i].b-1));
}
for(int i=l;i<=r;i++) if(sq[i].p<=mid) add(sq[i].b,-1);
std::sort(sq+l,sq+r+1,cmp2);
for(int i=l;i<=r;i++)
{
if(sq[i].p>mid) add(sq[i].b,1);
else ans[sq[i].b]+=1ll*(ask(m)-ask(sq[i].b-1));
}
for(int i=l;i<=r;i++) if(sq[i].p>mid) add(sq[i].b,-1);
}
int main()
{
scanf("%d%d",&n,&m);
for(int a,i=1;i<=n;i++)
{
scanf("%d",&a);
sq[a].a=i;
sq[a].b=m;
sq[a].p=a;
}
for(int a,i=1;i<=m;i++)
{
scanf("%d",&a);
sq[a].b=i;
}
CDQ(1,n);
ans[m]>>=1;
for(int i=m-1;i;i--) ans[i]+=ans[i+1];
for(int i=1;i<=m;i++) printf("%lld\n",ans[i]);
return 0;
}

2018.11.27

洛谷 P3157 [CQOI2011]动态逆序对 解题报告的更多相关文章

  1. 洛谷 P3157 [CQOI2011]动态逆序对(树套树)

    题面 luogu 题解 树套树(树状数组套动态开点线段树) 静态使用树状数组求逆序对就不多说了 用线段树代替树状数组,外面套树状数组统计每个点逆序对数量 设 \(t1[i]\)为\(i\)前面有多少个 ...

  2. 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治

    题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...

  3. 洛谷P3157 [CQOI2011]动态逆序对

    题目大意: 给定\(1\)到\(n\)的一个排列,按照给定顺序依次删除\(m\)个元素,计算每个元素删除之前整个序列的逆序对数量 基本套路:删边变加边 那么我们不就是求满足\(pos_i<pos ...

  4. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  5. P3157 [CQOI2011]动态逆序对

    P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...

  6. P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任 ...

  7. [Luogu P3157][CQOI2011]动态逆序对 (树套树)

    题面 传送门:[CQOI2011]动态逆序对 Solution 一开始我看到pty巨神写这套题的时候,第一眼还以为是个SB题:这不直接开倒车线段树统计就完成了吗? 然后冷静思考了一分钟,猛然发现单纯的 ...

  8. luogu P3157 [CQOI2011]动态逆序对(CDQ分治)

    题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...

  9. LUOGU P3157 [CQOI2011]动态逆序对(CDQ 分治)

    传送门 解题思路 cdq分治,将位置看做一维,修改时间看做一维,权值看做一维,然后就转化成了三维偏序,用排序+cdq+树状数组.注意算删除贡献时要做两次cdq,分别算对前面和后面的贡献. #inclu ...

随机推荐

  1. abp 指定方法不生成api

    方法上面添加RemoteServiceAttribute特性

  2. rocketmq Lock failed,MQ already started -c参数

    今天部署rocketmq集群时一台机器部署一个master 和slave,slave部署总是失败,通过查看日志显示下面的错误 java.lang.RuntimeException: Lock fail ...

  3. Git生成多个ssh key

    在实际的工作中, 有可能需要连接多个远程仓库, 例如我想连接私有仓库.GitLab官网.GitHub官网, 那么同一台电脑就要生成多个ssh key: ssh-keygen -t rsa -C &qu ...

  4. 心中忐忑的跨进了Python的大门!

    Hello!大家好,我是Jmmy 作为一个python初学者,抱着一种忐忑的心里走进了这扇让我有些胆怯的大门,因为零基础的缘故让我不得不再三去考虑学这门语言,英语.数学都是个渣的我,也许注定会止步门外 ...

  5. 四、Django之模型与管理后台-Part 2

    一.数据库安装 打开mysite/settings.py配置文件,这是整个Django项目的设置中心.Django默认使用SQLite数据库,因为Python源生支持SQLite数据库,所以你无须安装 ...

  6. mac安装pkg 一直“正在验证” 卡着

    今天换了新mac, 但是之前wireshark(抓包工具) 不能用了 ,要安装Xquartz. 下载之后一直卡着, 网上找了半天没有解决方法. 最后我重启一下就好了... 重启一下. 2. 15款ma ...

  7. windows python MySQL-python安装过程

    问题表述: pip install MySQL-python==1.2.5 出现如下报错: C:\Users\Administrator\AppData\Local\Programs\Common\M ...

  8. 欢迎来怼---作业要求 20171015 beta冲刺贡献分分配规则

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 基础分      每人占个人总分的百分之40% leangoo里面的得分    每人占个人总分里 ...

  9. Centos 关闭图形界面

    查看/etc/inittab如下: # systemd uses 'targets' instead of runlevels. # by default, there are two main ta ...

  10. pat甲级1002

    1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue T ...