USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。 列号
0 1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解。请遍一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。 特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出,这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号将被无警告删除
Input
一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
Output
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
Sample Input
6
Sample Output
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4 解题思路:求解n皇后的裸题。
之前就一直想写写关于八皇后问题的博客,这次碰到裸题,就一起说了吧。 八皇后问题: 在棋盘上放置8个皇后,使得它们互不攻击,此时每一个皇后的攻击范围为同行同列和同对角线,要求找出所有的解。 分析:最简单的思路是把问题转化为"从64个格子中选取一个子集",使得“子集中掐有8个格子,且任意两个选出的格子都不在同一行、同一列、同一个对角线上”,这正是子集的枚举问题,
然而64个格子的子集有2^64个,太大了,这并不是一个很好的模型。
第二个思路是把问题转化为“从64个格子中选8个格子”,这是组合生成问题。根据组合数学,有4.426*10^9种方案,比第一种优秀,但仍然不够很好。
经过思考,不难发现:恰好每行每列各放置一个皇后,如果用C[x]表示第x行皇后的编号,则问题变成了全排列生成问题。而0-7的排列一共有8!=40320个,枚举量不会超过它。 而至于如何枚举,则需要编写递归程序实现枚举。
当把问题分成若干步骤并递归求解时,如果当前步骤没有合法选择,则函数将返回上一级递归调用,这种现象叫做回溯。真因为这个原因,递归枚举算法常被称作回溯法。 关于代码说明。
1.既然是逐行放置,则皇后肯定不会横向攻击,因此只需要检查是否纵向和斜向攻击即可。
2.vis数组的使用:vis数组的确切意义是什么?它表示已经放置的皇后占据了那些列、主对角线、副对角线。vis[0][i]代表占据列;vis[1][x+i]代表占据副对角线;vis[2][x-i+n]代表
占据主对角线上的点,但y-x可能为负数,所以需要加n存取。 3.一般的,如果在回溯法中修改了辅助的全局变量,则一定要既是把它们恢复原状(除非故意保留所做修改!)
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAX 110
using namespace std;
int n;
int sum;
int ans[MAX];
int vis[][MAX];///vis[0]代表列,vis[1]代表副对角线,vis[2]代表主对角线
void DFS(int x)
{
int i;
if(x==n+)
{
sum++;
if(sum<=)
{
for(i=; i<=n; i++)
{
if(i==)
{
printf("%d",ans[i]);
}
else
{
printf(" %d",ans[i]);
}
}
printf("\n");
return ;
}
}
for(i=; i<=n; i++)
{
if(!vis[][i]&&!vis[][x+i]&&!vis[][x-i+n])
{
vis[][i]=vis[][x+i]=vis[][x-i+n]=;
ans[x]=i;
DFS(x+);
vis[][i]=vis[][x+i]=vis[][x-i+n]=;///状态恢复
}
}
}
int main()
{
scanf("%d",&n);
memset(ans,,sizeof(ans));
memset(vis,,sizeof(vis));
DFS();
printf("%d\n",sum);
}
USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)的更多相关文章
- Checker Challenge跳棋的挑战(n皇后问题)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- 【luoguP1219】【USACO】八皇后
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- BZOJ2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 513 Solved: 201[Submit][ ...
- 2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 553 Solved: 230[Submit][ ...
- bzoj2292【POJ Challenge 】永远挑战*
bzoj2292[POJ Challenge ]永远挑战 题意: 有向图,每条边长度为1或2,求1到n最短路.点数≤100000,边数≤1000000. 题解: 有人说spfa会T,所以我用了dijk ...
随机推荐
- angular入门一之环境安装及项目创建
angular入门一之环境安装及项目创建 1.安装node.js 下载,安装,在终端测试安装是否成功:node -v(查看nodejs版本) npm -v(查看npm版本) 下载地址:https:// ...
- C++多态之虚函数
多态:不同对象收到相同消息时,产生不同的动作.(说通俗点就相当于,在一工地上有许多工人,每个工人负责的工作都不一样,但是他们在听到领班发出“开工”命令后,开始各自负责的工作). 在c++中实现多态,我 ...
- BZOJ 4520: [Cqoi2016]K远点对(k-d tree)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1162 Solved: 618[Submit][Status][Discuss] Descripti ...
- 将Vue插件发布到npm的完整记录
前言 面对越来越多的组件库,越开越多的ui库,学会发布库已经是前端必须会的事情了,也算是为开源贡献一份力量,在网络上看了一些前者的文章,也算的发布成功了,虽然还存在很多问题,路不积跬步,无以至千里 ...
- Delphi XE7调用Java Class,JAR
Delphi XE5,XE6需要用户手工编译并将Classes.Dex加入到包中,不过Delphi XE7可以省掉这些工作了. 如何在XE7中调用Java,具体步骤如下: 1.将jar文件添加到XE7 ...
- 回文词 (Palindromes,Uva401)
例题 3-3 回文词 (Palindromes,Uva401) 输入一个字符中,判断它是否为回文串以及镜像串.输入字符串保证不含数字0.所谓回文串,就是反转以后和原串相同,如abba和madam.所有 ...
- 20155218 2016-2017-2 《Java程序设计》第9周学习总结
20155218 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 JDBC全名Java DataBase Connectivity,是java联机数据库的标准 ...
- 20155331 《Java程序设计》实验一(Java开发环境的熟悉)实验报告
20155331 <Java程序设计>实验一(Java开发环境的熟悉)实验报告 一.实验内容及步骤 使用JDK编译.运行简单的java程序 实验目的与要求: 使用JDK和IDE编译.运行简 ...
- 20155332 2006-2007-2 《Java程序设计》第3周学习总结
学号 2006-2007-2 <Java程序设计>第3周学习总结 教材学习内容总结 尽量简单的总结一下本周学习内容 尽量不要抄书,浪费时间 看懂就过,看不懂,学习有心得的记一下 教材学习中 ...
- 20155333 2016-2017-2《Java程序设计》课程总结
20155333 2016-2017-2<Java程序设计>课程总结 (按顺序)每周作业链接汇总 预备作业1:你期望的师生关系是什么? 预备作业2:体会做中学(Learing By Doi ...