【LG3238】 [HNOI2014]道路堵塞
题目描述
给你一张\(N\)个点、\(M\)条边的有向图,按顺序给定你一条有\(L\)条边的\(1\rightarrow n\)的最短路,
每次断掉这\(L\)条边中的一条(不对后面答案产生影响),求每次断边之后的最短路。
题解
40pts
每次断边之后跑\(dijkstra\)最短路即可,复杂度\(O(LM\log N)\)。
100pts
法一:
好像是一种奇怪的堆+\(spfa\)算法,但是在现在这种卡\(spfa\)的大环境下,这种方法已经不对了。
法二:
分别建正图和反图跑dijkstra,记一个点\(i\)在起点为\(1\)的正图上最短距离为\(dis_i\),
在起点为\(N\)的反图上最短距离为\(dis'_i\),可以
枚举每一条不是那\(L\)条边中的边\(e_{a\rightarrow b}\),可以知道过这一条边的最短路长度为\(dis_a+dis'_b\)+\(e_{a\rightarrow b}\)的长度。
设给定的\(L\)条边分别为\(e_1,e_2...e_L\)。
则经过这一条边的最短路序列为:
\(e_1\rightarrow ...\;\rightarrow e_i\rightarrow\)一些奇怪的边\(\rightarrow e_{a\rightarrow b}\rightarrow\)一些奇怪的边\(\rightarrow e_j\rightarrow ...\;\rightarrow e_L\)
其中\(1\leq i<j\leq L\)。
那么对于\(i+1\)到\(j-1\)的所有边,我们断掉他们时,可以通过一条长度为\(\;\;dis_a+dis'_b\)+\(e_{a\rightarrow b}\)的长度\(\;\;\)的路径到达。
则在线段树上在区间\([i+1,j-1]\)打一个路径长度的标记,对于每一个\(e_i\),单点查询即可。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int INF = 1e9;
const int MAX_N = 1e5 + 5, MAX_M = 2e5 + 5;
struct Edge { int u, v, w; } e[MAX_M];
struct Graph { int to, cost, num; } ;
vector<Graph> G[2][MAX_N];
int N, M, L, sp[MAX_N], dis[2][MAX_N], prv[2][MAX_N], used[MAX_M];
int chk(int x, int y, bool op) { return op ? max(x, y) : min(x, y); }
void dijkstra(int s, int op, int t) {
static priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que;
for (int i = 1; i <= N; i++) dis[op][i] = INF;
que.push(make_pair(dis[op][s] = 0, s));
while (!que.empty()) {
pair<int, int> p = que.top(); que.pop();
int x = p.second;
if (p.first < dis[op][x]) continue;
if (x == t) continue;
for (int i = 0, sz = G[op][x].size(); i < sz; i++) {
Graph &e = G[op][x][i]; int v = e.to;
if (dis[op][x] + e.cost < dis[op][v]) {
prv[op][v] = (op ? 0 : INF);
dis[op][v] = dis[op][x] + e.cost;
if (!used[e.num]) prv[op][v] = chk(prv[op][v], prv[op][x], op);
else prv[op][v] = chk(prv[op][v], used[e.num], op);
que.push(make_pair(dis[op][v], v));
} else if (dis[op][x] + e.cost == dis[op][v]) {
if (!used[e.num]) prv[op][v] = chk(prv[op][v], prv[op][x], op);
else prv[op][v] = chk(prv[op][v], used[e.num], op);
}
}
}
}
#define lson (o << 1)
#define rson (o << 1 | 1)
int val[MAX_M << 2], tag[MAX_M << 2];
void puttag(int o, int v) { val[o] = min(val[o], v); tag[o] = min(tag[o], v); }
void pushdown(int o, int l, int r) {
if (l == r || tag[o] == INF) return ;
puttag(lson, tag[o]); puttag(rson, tag[o]);
tag[o] = INF;
}
void pushup(int o) { val[o] = min(val[lson], val[rson]); }
void modify(int o, int l, int r, int ql, int qr, int v) {
if (ql <= l && r <= qr) return (void)(puttag(o, v));
pushdown(o, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) modify(lson, l, mid, ql, qr, v);
if (qr > mid) modify(rson, mid + 1, r, ql, qr, v);
pushup(o);
}
int query(int o, int l, int r, int pos) {
pushdown(o, l, r);
if (l == r) return val[o];
int mid = (l + r) >> 1;
if (pos <= mid) return query(lson, l, mid, pos);
else return query(rson, mid + 1, r, pos);
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi(), M = gi(), L = gi();
for (int i = 1; i <= M; i++) {
int u = gi(), v = gi(), w = gi();
G[0][u].push_back((Graph){v, w, i});
G[1][v].push_back((Graph){u, w, i});
e[i] = (Edge){u, v, w};
}
for (int i = 1; i <= L; i++) used[sp[i] = gi()] = i;
for (int i = 1; i <= N; i++) prv[0][i] = L + 1, prv[1][i] = 0;
prv[0][1] = 0, prv[1][N] = L + 1;
dijkstra(1, 0, N);
dijkstra(N, 1, 1);
for (int i = 1; i <= (L << 2); i++) val[i] = tag[i] = INF;
for (int i = 1; i <= M; i++) {
if (used[i] || dis[0][e[i].u] == INF || dis[1][e[i].v] == INF) continue;
int l = prv[0][e[i].u] + 1;
int r = prv[1][e[i].v] - 1;
if (l > r) continue;
else modify(1, 0, L + 1, l, r, dis[0][e[i].u] + dis[1][e[i].v] + e[i].w);
}
for (int i = 1; i <= L; i++) {
int ans = query(1, 0, L + 1, i);
printf("%d\n", (ans == INF) ? -1 : ans);
}
return 0;
}
【LG3238】 [HNOI2014]道路堵塞的更多相关文章
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
- 动态删边SPFA: [HNOI2014]道路堵塞
[HNOI2014]道路堵塞 题目描述 $A$ 国有 $N$座城市,依次标为$1$到$N$.同时,在这$N$座城市间有$M$条单向道路,每条道路的长度是一个正整数.现在,$A$国交通部指定了一条从城市 ...
- bzoj 3575: [Hnoi2014]道路堵塞
Description A 国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径, 并且保证这条路径的长度是所 ...
- [HNOI2014]道路堵塞
题目描述 A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有从城市1到城市N ...
- bzoj3575[Hnoi2014]道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 总赶脚第二题总是比第三题难...... 好吧,这题一点思路都没有 听说用民科可以过掉大部分数据 ...
- luogu P3238 [HNOI2014]道路堵塞
传送门 这什么题啊,乱搞就算了,不知道SPFA已经死了吗 不对那个时候好像还没死 暴力就是删掉边后跑Dijkstra SPFA 然后稍微分析一下,可以发现题目中要求的不经过最短路某条边的路径,一定是先 ...
- BZOJ.3575.[HNOI2014]道路堵塞(最短路 动态SPFA)
题目链接 \(Description\) 给你一张有向图及一条\(1\)到\(n\)的最短路.对这条最短路上的每条边,求删掉这条边后\(1\)到\(n\)的最短路是多少. \(Solution\) 枚 ...
- 【BZOJ】3575: [Hnoi2014]道路堵塞
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3575 大概的做法是,按照顺序枚举每一条要删去的边,(假设当前点为$u$,在最短路径上的下一 ...
- 【bzoj3575】 Hnoi2014—道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 (题目链接) 题意 给出一个有向图和一条最短路,问最短路上任意一条边断掉,此时的最短路是多少. ...
随机推荐
- mongod入门实战
mongod-入门 摘要: 本篇文档,带你快速启动一个mongod,到搭建主从+复制集模式的入门. 内容包括:单实例安装,复制集构建,分片构建,分片及复制集整合. 软件相关信息介绍 MongoDB 是 ...
- MacBook搭建go语言开发环境
mac下要安装 go 最简单的方式是通过 homebrew 直接执行: brew update && brew upgrade brew install go 安装完成后需要指定 GO ...
- [Python 网络编程] TCP编程/群聊服务端 (二)
群聊服务端 需求分析: 1. 群聊服务端需支持启动和停止(清理资源); 2. 可以接收客户端的连接; 接收客户端发来的数据 3. 可以将每条信息分发到所有客户端 1) 先搭架子: #TCP Serve ...
- vector详讲(三)实例
移动语义: push语句有时候会通过移动语义来提高性能 #include <iostream> #include <vector> class Element { public ...
- php json格式化输出
1.json格式是适用于多种语言的数据格式,通用性高 2.在php中将array格式的数据转化为json格式 3.默认情况下转化后的json格式为一个串,需要将这个串格式化成相应的样式输出 主要的函数 ...
- 《Python核心编程》第二版第三章答案
本人python新手,答案自己做的,如果有问题,欢迎大家评论和讨论! 更新会在本随笔中直接更新. 我在Windows使用python版本是2.7.0 3–10. 异常.使用类似readTextFile ...
- C语言的谜题
本篇文章<C语言的谜题>展示了14个C语言的迷题以及答案,代码应该是足够清楚的,而且我也相信有相当的一些例子可能是我们日常工作可能会见得到的.通过这些迷题,希望你能更了解C语言.如果你不看 ...
- Web—12-详解CSS的相对定位和绝对定位
CSS的相对定位和绝对定位通常情况下,我们元素的position属性的值默认为static 就是没有定位,元素出现在正常的文档流中,,这个时候你给这个元素设置的left,right,bottom,to ...
- iOS10 语音播报填坑详解(解决串行播报中断问题)
iOS10 语音播报填坑详解(解决串行播报中断问题) 在来聊这类需求的解决方案之前,咱们还是先来聊一聊这类需求的真实使用场景:语音播报.语音播报需求运用最为广泛的应该是收银对账了,就类似于支付宝.微信 ...
- iOS 第三方库、插件、知名博客总结
iOS 第三方库.插件.知名博客总结 用到的组件 1.通过CocoaPods安装 项目名称 项目信息 AFNetworking 网络请求组件 FMDB 本地数据库组件 SDWebImage 多个缩略图 ...