这题做的时候接连想错了好多次……但是回到正轨上之后依然是一个套路题。(不过这题好像有比莫比乌斯反演更好的做法,莫比乌斯反演貌似是某种能过的暴力ヽ(´ー`)┌)不过能过也就行了吧哈哈。

  首先我们把数字的范围要进行缩小:最大公约数为 \(K\) 那自然所有选出来的数都必须是 \(K\) 的倍数。所以我们改选数为选择是 \(K\) 的多少倍。然后由于是最大公约数,所以选出来的这些数必须最大公约数等于\(1\)。实际上多个数的最大公约数\( = 1\)完全可以和两个数的最大公约数 \( = 1\) 用一样的方法去反演。只不过这题由于数据范围非常的大,所以处理 \(\mu\) 的前缀和必须要使用杜教筛。

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000300
#define db double
#define int long long
int maxx = maxn - 1e2, mod = 1e9 + ;
int N, K, L, H, ans, Sum[maxn];
int tot, pri[maxn];
map <int, int> Map;
bitset <maxn> is_prime; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int qpow(int x, int times)
{
int base = ; x %= mod;
for(; times; times >>= , x = (x * x) % mod)
if(times & ) base = (base * x) % mod;
return base;
} void Get_Mu()
{
Sum[] = ;
for(int i = ; i <= maxx; i ++)
{
if(!is_prime[i]) pri[++ tot] = i, Sum[i] = -;
for(int j = ; j <= tot; j ++)
{
int tem = i * pri[j];
if(tem > maxx) break;
is_prime[tem] = ;
if(!(i % pri[j])) { Sum[tem] = ; break; }
else Sum[tem] = - Sum[i];
}
}
for(int i = ; i <= maxx; i ++) Sum[i] = (Sum[i] + Sum[i - ]) % mod;
} int Mu(int x)
{
if(x <= maxx) return Sum[x];
if(Map[x]) return Map[x];
int ret = ;
for(int l = , r; l <= x; l = r + )
{
r = x / (x / l);
ret = (ret + (r - (l - )) * Mu(x / l) % mod) % mod;
}
return Map[x] = ( - ret + mod) % mod;
} int Solve(int n, int m)
{
int ret = ;
for(int l = , r; l <= m; l = r + )
{
if(n / l) r = min((n / (n / l)), (m / (m / l)));
else r = (m / (m / l));
ret += qpow(m / l - n / l, N) % mod * (Mu(r) - Mu(l - )) % mod;
ret %= mod;
}
return ret;
} signed main()
{
N = read(), K = read(), L = read(), H = read(), ans = ;
Get_Mu();
int l = floor((db) (L - ) / (db) K), r = floor((db) H / (db) K);
ans = Solve(l, r);
printf("%lld\n", (ans + mod) % mod);
return ;
}

【题解】CQOI2015选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  3. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  4. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  5. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  6. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  7. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  8. BZOJ3930:[CQOI2015]选数——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://www.luogu.org/problemnew/show/P3172#sub ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

随机推荐

  1. js,setTimeout与setInterval的用法

    1.setTimeout与setInterval的区别 setTimeout: 1.直接使用的话,按照指定 的时间,只执行一次传入的函数参数. 2.函数的终止使用clearTimeout. setIn ...

  2. 使用Win32DiskImager后重置SD卡

    再1.Windows diskpart命令 diskpart 2.列出所有的磁盘 lisk disk 3.选择U盘所在的磁盘 4.清除磁盘 clean 5.创建主分区 create primary p ...

  3. java简单web爬虫(网页图片)

    java简单web爬虫(网页图片)效果,执行main()方法后图片就下载道C盘的res文件夹中.没有的话创建一个文件夹代码里的常量根据自己的需求修改,代码附到下面. package com.sinit ...

  4. JDK7 新特性

    JDK7新特性的目录导航: 二进制字面值 switch 语句支持 String try-with-resources catch 多个类型异常 字面值中使用下划线 类型推断 改进泛型类型可变参数 其它 ...

  5. Python基本图形绘制

    turtle的一个画布空间最小单位是像素 turtle的绘制窗体:turtle.stup(width,heigth,startx,starty) 四个参数中后两个可选 turtle空间坐标体系:tur ...

  6. windows 安装 .net core 环境

    windows 安装 环境说明 window10系统 .net core 1.0.1 visual studio code 安装 .net core Windows系统下安装软件基本上属于傻瓜式安装, ...

  7. SXOI2018游记

    day0 动身去太原.太原五中虽然挺小的但是很好看啊qwq(进门口一个"通天堂"(逃 试机.似乎看到了__stdcall!!然而没敢去认orz.linux选手似乎是9个.准考证(一 ...

  8. Dos命令%date:~0,10%

    在使用命令对数据库备份的时候,想让备份的文件以当天的日期命名.需要获取当天的日期,获取当天的日期用date命令,获取当天的时间用time命令.但时间和日期一般都是有一定格式的,而使用的时候,是不想用那 ...

  9. dubbo心跳机制 (1)

    此文已由作者赵计刚授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. dubbo的心跳机制: 目的:检测provider与consumer之间的connection连接是不是还连 ...

  10. js数字格式化千分位格式

    带小数点的 var a = 8462948.2453; console.log(a.toLocaleString()) //8,462,948.245 不带小数点的 num.toString().re ...