斜率dp+cdq分治
写在前面
这个东西应该是一个非常重要的套路......所以我觉得必须写点什么记录一下,免得自己忘掉了
一直以来我的斜率dp都掌握的不算很好......也很少主动地在比赛里想到
写这个的契机是noi.ac在今天的考试中考了一道用这玩意儿的原题,被我搞出来了,于是决定总结一下(毕竟见得越来越多)
斜率dp
考虑一个常见的二次复杂度的dp:
$dp[i]=min(dp[j]+c(i)+g(j)+k(i)*f(j))$
其中$c,g,k,f$都是只和括号里的$i,j$有关的一元函数
一个很重要的思想是:看到n方dp的时候先想想能不能搞成这个样子的式子
如果搞出来了,这个东西一定可以在$O(n\log n)$的时间里面做出来——用cdq分治
怎么cdq
我们先给这四个函数名字:
$c(i)$是额外附加的只和$i$有关的常数
$f(i)=x(i)$作为横坐标
$g(i)=y(i)$作为纵坐标
$k(i)$是$i$这一点上的转移斜率
首先把所有点按照斜率排序
对于过程solve(l,r),这样操作:
首先,按照输入编号,把(l,r)分成两半,然后递归处理solve(l,mid)
返回的是一个按照横坐标排好序的原数组(dp值都知道了的)
我们把这一批东西做一个上凸包(或者下凸包,依照要求max还是min变化)
然后对于后面那一半点我们用前面这个凸包更新答案,一个指针遍历右边一半,另一个指针遍历左边的凸包,每次跳到最优位置为止
这之后,我们递归处理右半部分
最后我们再对这两半归并排序,按照横坐标
什么意义?
实际上这一波操作中,有三个中间被我们排了序的元素:输入编号,斜率,横坐标
实际上就是一个三维偏序:因为不像普通的斜率dp那样横纵坐标或者斜率有单调性,所以我们强行cdq
这样,在每一次更新后一半的时候,前一半都是做完的,而且已经横坐标单调了
朴素n方dp很好看出来,然后发现可以直接套到上面式子里面
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define head DEEP_DARK_FANTASY
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n;;
struct node{
ll w,h,c,x,y,k,dp,num;
}a[100010],tmp[100010],q[100010];
inline bool cmp1(node l,node r){
return l.k<r.k;
}
void solve(int l,int r){
if(l==r){
a[l].x=a[l].h;
a[l].y=a[l].dp-a[l].w+a[l].h*a[l].h;
return;
}
int mid=(l+r)>>1,tl,tr,head,tail,i;
tl=tr=0;
for(i=l;i<=r;i++){
if(a[i].num<=mid) tmp[++tl]=a[i];
else q[++tr]=a[i];
}
for(i=l;i<=mid;i++) a[i]=tmp[i-l+1];
for(i=mid+1;i<=r;i++) a[i]=q[i-mid];
solve(l,mid);
head=1,tail=0;
for(i=l;i<=mid;i++){
while(tail>head&&(q[tail].y-q[tail-1].y)*(a[i].x-q[tail].x)>=(q[tail].x-q[tail-1].x)*(a[i].y-q[tail].y)) tail--;
q[++tail]=a[i];
}
tl=1;
for(i=mid+1;i<=r;i++){
while(tl<tail&&a[i].k*(q[tl+1].x-q[tl].x)>=(q[tl+1].y-q[tl].y)) tl++;
a[i].dp=min(a[i].dp,-q[tl].x*a[i].k+q[tl].y+a[i].c);
}
solve(mid+1,r);
tl=l;tr=mid+1;head=0;
while(tl<=mid&&tr<=r){
if(a[tl].x==a[tr].x) tmp[++head]=((a[tl].y>a[tr].y)?a[tr++]:a[tl++]);
else tmp[++head]=((a[tl].x>a[tr].x)?a[tr++]:a[tl++]);;
}
while(tl<=mid) tmp[++head]=a[tl++];
while(tr<=r) tmp[++head]=a[tr++];
for(i=l;i<=r;i++) a[i]=tmp[i-l+1];
}
int main(){
n=read();int i;
for(i=1;i<=n;i++){
a[i].h=read();
a[i].dp=1e18;
a[i].num=i;
}
for(i=1;i<=n;i++){
a[i].w=read();
a[i].w+=a[i-1].w;
}
for(i=1;i<=n;i++){
a[i].c=a[i].h*a[i].h+a[i-1].w;
a[i].k=2ll*a[i].h;
}
a[1].dp=0;
sort(a+1,a+n+1,cmp1);
solve(1,n);
for(i=1;i<=n;i++)
if(a[i].num==n) printf("%lld\n",a[i].dp);
}
斜率dp+cdq分治的更多相关文章
- 斜率dp cdq 分治
f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...
- bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...
- bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492 [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...
- 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治
题目描述 给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...
- bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...
- BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...
- 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 3396 Solved: 1434[Submit][Sta ...
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
随机推荐
- MySql指令的执行顺序
1:From 2:On 3:Join 4:Where 5:Group by 5.1:函数 6:Having 7:Select 8:Distinct 9:Order by
- JavaScript : CORS和Ajax请求
CORS(Cross-Origin Resource Sharing, 跨源资源共享)是W3C出的一个标准,其思想是使用自定义的HTTP头部让浏览器与服务器进行沟通,从而决定请求或响应是应该成功,还是 ...
- ECSHOP和SHOPEX快递单号查询韵达插件V8.6专版
发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...
- zabbix监控nginx服务状态
nginx需要安装--with-http_stub_status_module模块 $ nginx -V nginx version: nginx/1.12.2 built by gcc 4.8.5 ...
- windows环境下安装scrapy框架报错问题--最快捷有效的解决方案
windows在执行如下命令,安装scrapy的过程中会报错: pip install scrapy 报错分析: windows环境下,会出现如下错误: 1.提示的错误是编译环境的问题,字面意思看需要 ...
- 用filter()筛选出素数
'use strict'; function get_primes(arr) { return arr.filter(function isPrime(number) { if (typeof num ...
- kafka重置offset
kafka重置offset 1.删除zookeeper上节点信息 打开client :./zkCli.sh -server 127.0.0.1:12181 删除consumer:rmr /cons ...
- 关于 spring-aop理解
对于Aop 一直理解很是不到位 谈谈自己理解! Aop : Aspect: 切面 joinpoint 连接点 pointCut 切点 Advice 增强 targert 目标对象 w ...
- MySQL数据库服务器逐渐变慢分析与解决
一.检查系统的状态 通过操作系统的一些工具检查系统的状态,比如CPU.内存.交换.磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为cpu可 ...
- Java工程师笔试题整理[校招篇]
Java工程师笔试题整理[校招篇] 隔着两个月即将开始校招了.你是不是也想借着这个机会崭露头角,拿到某些大厂的offer,赢取白富美.走上人生巅峰?当然如果你还没能打下Java基础,一定要先打 ...