题目大意:在数轴上有$n$个闭区间$[l_1,r_1],[l_2,r_2],...,[l_n,r_n]$。现在要从中选出 $m$ 个区间,使得这 $m$ 个区间共同包含至少一个位置。输出被选中的最长区间长度减去被选中的最短区间长度,若多解,输出最小的一个

题解:把区间按长度排序,然后把左右端点离散化,双指针扫一下,线段树维护一下有没有点被覆盖$ \geq m$次即可

卡点:1.因为有$2\times n$个点,所以线段树开小了一倍

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 500010
using namespace std;
const int inf = 0x3f3f3f3f;
int n, m, tot, M, ans;
int p[maxn << 1];
struct interval {
int l, r, len;
bool operator < (const interval & b) const {return len < b.len;}
} s[maxn];
inline int min(int a, int b) {return a < b ? a : b;}
inline int max(int a, int b) {return a > b ? a : b;}
int V[maxn << 3], cov[maxn << 3];
void pushdown(int rt) {
int &tmp = cov[rt];
V[rt << 1] += tmp;
V[rt << 1 | 1] += tmp;
cov[rt << 1] += tmp;
cov[rt << 1 | 1] += tmp;
tmp = 0;
}
void add(int rt, int l, int r, int L, int R, int num = 1) {
if (L <= l && R >= r) {
V[rt] += num;
cov[rt] += num;
return ;
}
if (cov[rt]) pushdown(rt);
int mid = l + r >> 1;
if (L <= mid) add(rt << 1, l, mid, L, R, num);
if (R > mid) add(rt << 1 | 1, mid + 1, r, L, R, num);
V[rt] = max(V[rt << 1], V[rt << 1 | 1]);
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d%d", &s[i].l, &s[i].r);
s[i].len = s[i].r - s[i].l;
p[i - 1 << 1 | 1] = s[i].l;
p[i << 1] = s[i].r;
}
tot = n << 1;
sort(p + 1, p + tot + 1);
sort(s + 1, s + n + 1);
M = lower_bound(p + 1, p + tot + 1, p[tot]) - p;
for (int i = 1; i <= n; i++) {
s[i].l = lower_bound(p + 1, p + tot + 1, s[i].l) - p;
s[i].r = lower_bound(p + 1, p + tot + 1, s[i].r) - p;
}
int L = 1;
ans = inf;
for (int i = 1; i <= n; i++) {
add(1, 1, M, s[i].l, s[i].r);
while (V[1] >= m && L <= i) {
ans = min(ans, s[i].len - s[L].len);
add(1, 1, M, s[L].l, s[L].r, -1);
L++;
}
}
printf("%d\n", (ans == inf) ? -1 : ans);
return 0;
}

  

[NOI2016 D2T1]区间的更多相关文章

  1. 【BZOJ4653】【NOI2016】区间(线段树)

    [BZOJ4653][NOI2016]区间(线段树) 题面 BZOJ 题解 \(NOI\)良心送分题?? 既然是最大长度减去最小长度 莫名想到那道反复减边求最小生成树 从而求出最小的比值 所以这题的套 ...

  2. 「NOI2016」区间 解题报告

    「NOI2016」区间 最近思维好僵硬啊... 一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护. 于是想研究性质,想到为 ...

  3. 【NOI2016】区间 题解

    题目大意: 有n个区间,当有m个区间有公共部分时,求m个区间长度的最大值与最小值之差的最小值. 思路: 按区间的长度从小到大排序,可知连续的几个区间最优,则用两个指针指其头尾,线性扫描,再用线段树区间 ...

  4. 【BZOJ4653】【NOI2016】区间 线段树

    题目大意 数轴上有\(n\)个闭区间\([l_1,r_1],[l_2,r_2],\ldots,[l_n,r_n]\),你要选出\(m\)个区间,使得存在一个\(x\),对于每个选出的区间\([l_i, ...

  5. 【NOI2016】区间

    目链接:http://uoj.ac/problem/222 在数轴上有 n 个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m 个区间共同包含至少 ...

  6. UOJ222 【NOI2016】区间

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. LOJ#2086. 「NOI2016」区间

    $n \leq 500000$个区间,从中挑出一些,使得至少有一个点被$m$个选中区间包含,且选中区间长度的极差最小. 区间题死脑筋晚期:把区间按左端点排序,然后右端点用个优先队列来弹,然后需要维护下 ...

  8. 「NOI2016」区间

    传送门 Luogu 解题思路 对于选出的区间,我们可以直接用线段树维护区间内单点被覆盖次数最大值. 那么解题重心便落在了选取方式上. 为了让最大值最小,考虑尺取,不能二分,降低效率而且不好写. 先将区 ...

  9. 【NOI2016】区间 题解(线段树+尺取法)

    题目链接 题目大意:给定$n$个区间$[l_i,r_i]$,选出$m$个区间使它们有一个共同的位置$x$,且使它们产生的费用最小.求最小费用.费用定义为最长的区间长度减去最短区间长度. ------- ...

随机推荐

  1. angularjs 自定义服务(serive,factory,provder) 以及三者的区别

    1.Serive 服务:通过service方式创建自定义服务,相当于new的一个对象:var s = new myService();,只要把属性和方法添加到this上才可以在controller里调 ...

  2. Spring笔记1

    Spring Spring特点 1. 方便解耦,简化开发 通过Spring提供的IoC容器,我们可以将对象之间的依赖关系交由Spring进行控制,避免硬编码所造成的过度程序耦合.有了Spring,用户 ...

  3. 我的机器学习之路--anaconda环境搭载

    网上许多教程比较晦涩难懂,本教程按照笔者(新手)自己的视角记录,希望给大家一些帮助 1.安装anaconda 目前比较推荐的机器学习环境为anaconda. Anaconda指的是一个开源的Pytho ...

  4. ctf题目writeup(3)

    题目地址: https://www.ichunqiu.com/battalion 1. 这个是个mp3,给的校验是为了下载下来的. 下来之后丢进audicity中 放大后根据那个音块的宽度来确定是 . ...

  5. [转]Makefile中使用$$的使用

    在makefile中,会经常使用shell命令,也经常见到$var 和 $$var的情况,有什么区别呢,区别大了.不要认为在makefile的规则的命令行中使用$var就是将makefile的变量和s ...

  6. Qt5 调试之详细日志文件输出(qInstallMessageHandler)

    注明:以下方法仅适用于 Qt5 及以上版本  函数说明: QtMessageHandler qInstallMessageHandler(QtMessageHandler handler) 此函数在使 ...

  7. 环形链表II 142 使用快慢指针(C++实现)

    /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode ...

  8. JAVA判断时间是否在时间区间内

    package com.liying.tiger.test; import java.text.ParseException; import java.text.SimpleDateFormat; i ...

  9. 45-Identity MVC:注册逻辑实现

    1-注册页Register.cshtml <h3>Register</h3> @model MvcCookieAuthSample.ViewModel.RegisterView ...

  10. 【財務会計】BS科目とは・PL科目とは

    「BS科目」「PL科目」という言葉がありますが.聞いたことあるけどよくわからん!っていう人は多いと思います.なので.簡単にご説明を. BS科目は「いくらあるか」 「BS科目」は.「B/S科目」と書くこ ...