Problem Statement

You are given N points (xi,yi) located on a two-dimensional plane. Consider a subset S of the N points that forms a convex polygon. Here, we say a set of points S forms a convex polygon when there exists a convex polygon with a positive area that has the same set of vertices as S. All the interior angles of the polygon must be strictly less than 180°.

For example, in the figure above, {A,C,E} and {B,D,E} form convex polygons; {A,C,D,E}, {A,B,C,E}, {A,B,C}, {D,E} and {} do not.

For a given set S, let n be the number of the points among the N points that are inside the convex hull of S (including the boundary and vertices). Then, we will define the score of S as 2n−|S|.

Compute the scores of all possible sets S that form convex polygons, and find the sum of all those scores.

However, since the sum can be extremely large, print the sum modulo 998244353.

Constraints

  • 1≤N≤200
  • 0≤xi,yi<104(1≤iN)
  • If ij, xixj or yiyj.
  • xi and yi are integers.

Input

The input is given from Standard Input in the following format:

N
x1 y1
x2 y2
:
xN yN

Output

Print the sum of all the scores modulo 998244353.


Sample Input 1

Copy
4
0 0
0 1
1 0
1 1

Sample Output 1

Copy
5

We have five possible sets as S, four sets that form triangles and one set that forms a square. Each of them has a score of 20=1, so the answer is 5.


Sample Input 2

Copy
5
0 0
0 1
0 2
0 3
1 1

Sample Output 2

Copy
11

We have three "triangles" with a score of 1 each, two "triangles" with a score of 2 each, and one "triangle" with a score of 4. Thus, the answer is 11.


Sample Input 3

Copy
1
3141 2718

Sample Output 3

Copy
0

There are no possible set as S, so the answer is 0.

————————————————————————————————

题意就是求对每个凸多边形,求(2^内部点数)的和 这里我们可以进行一波转换
考虑每个凸多边形,其内部的点每个都可以选择删与不删,得到的方案数就是贡献
而这个转化恰好就等价于不共线的子集数 共线就是子集内所有点在同一直线上
这样之后我们只要用总的子集数减去共线的子集数就好了
枚举直线倾斜角,算包含至少两点的共线子集有几个
倾斜角用枚举两两点得到 然后求gcd使得每个倾角有唯一表达形式
将向量(x,y)转为唯一表示法,然后求个hash
方便sort比较 然后并查集维护 这样复杂度是n^3
当然也可以把斜率离散化从sort换成散列表或者基数排序 然后并查集换成连边,忽略没连到边的点就n^2了

#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=,mod=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,f[M],sz[M];
int find(int x){while(f[x]!=x) x=f[x]=f[f[x]]; return x;}
int gcd(int x,int y){return y?gcd(y,x%y):x;}
struct pos{int x,y;}q[M];
int cnt;
struct node{
int u,v,w;
bool operator <(const node &x)const{return w<x.w;}
void calc(){
int p=find(u),q=find(v);
if(p!=q) f[q]=p,sz[p]+=sz[q];
}
}e[M*M];
int pw[M],ans;
void prepare(){
pw[]=;
for(int i=;i<=n;i++) pw[i]=(pw[i-]<<)%mod;
}
int main(){
n=read();
prepare(); ans=(pw[n]-n-)%mod;
for(int i=;i<=n;i++) q[i].x=read(),q[i].y=read();
for(int i=;i<=n;i++)
for(int j=;j<i;j++){
int x=q[i].x-q[j].x,y=q[i].y-q[j].y,g=gcd(x,y);
x/=g; y/=g;
if(!x) y=;
if(!y) x=;
if(x<) x=-x,y=-y;
e[++cnt]=(node){i,j,x*+y};
}
std::sort(e+,e++cnt);
for(int i=,j=;i<=cnt;i=j){
for(int k=;k<=n;k++) sz[f[k]=k]=;
while(j<=cnt&&e[j].w==e[i].w) e[j++].calc();
for(int k=;k<=n;k++) if(f[k]==k&&sz[k]>=) ans=(ans-pw[sz[k]]+sz[k]+)%mod;
}printf("%d\n",(ans+mod)%mod);
return ;
}

AtCoder Regular Contest 082 E的更多相关文章

  1. AtCoder Regular Contest 082 D Derangement

    AtCoder Regular Contest 082 D Derangement 与下标相同与下个交换就好了.... Define a sequence of ’o’ and ’x’ of lengt ...

  2. AtCoder Regular Contest 082

    我都出了F了……结果并没有出E……atcoder让我差4分上橙是啥意思啊…… C - Together 题意:把每个数加1或减1或不变求最大众数. #include<cstdio> #in ...

  3. AtCoder Regular Contest 082 (ARC082) E - ConvexScore 计算几何 计数

    原文链接http://www.cnblogs.com/zhouzhendong/p/8934254.html 题目传送门 - ARC082 E 题意 给定二维平面上的$n$个点,定义全集为那$n$个点 ...

  4. 【推导】【模拟】AtCoder Regular Contest 082 F - Sandglass

    题意:有个沙漏,一开始bulb A在上,bulb B在下,A内有a数量的沙子,每一秒会向下掉落1.然后在K个时间点ri,会将沙漏倒置.然后又有m个询问,每次给a一个赋值ai,然后询问你在ti时刻,bu ...

  5. 【计算几何】【推导】【补集转化】AtCoder Regular Contest 082 E - ConvexScore

    题意:平面上给你N个点.对于一个“凸多边形点集”(凸多边形点集被定义为一个其所有点恰好能形成凸多边形的点集)而言,其对答案的贡献是2^(N个点内在该凸多边形点集形成的凸包内的点数 - 该凸多边形点集的 ...

  6. 【推导】AtCoder Regular Contest 082 D - Derangement

    题意:给你一个排列a,每次可以交换相邻的两个数.让你用最少的交换次数使得a[i] != i. 对于两个相邻的a[i]==i的数,那么一次交换必然可以使得它们的a[i]都不等于i. 对于两个相邻的,其中 ...

  7. AtCoder Regular Contest 082 F

    Problem Statement We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contai ...

  8. AtCoder Regular Contest 082 ABCD

    A #include<bits/stdc++.h> using namespace std; ]; int n,m; int main(){ cin>>n>>m; ...

  9. 【AtCoder Regular Contest 082 F】Sandglass

    [链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1 ...

随机推荐

  1. Cadence17.2下载ALTERA的FPGA封装库

    1. 在Cadence的安装目录里面找了下,发现都没有Altera的FPGA型号的函数库,下面的虽然是ALTERA,但是没有FPGA的器件封装 2. 去intel的官网看能不能下载到,INTEL网址, ...

  2. VectorDrawable在Android中的配置

    一.让Android支持VectorDrawable apply plugin: 'com.android.application' android { defaultConfig { vectorD ...

  3. adb常用命令(手机测试)

                                                   ADB安装与常用命令详解 一.ADB意义 adb的全称为Android Debug Bridge,就是起到 ...

  4. devstack环境搭建

    1. devstack部署 参考Quick Start,推荐使用ubuntu16.04进行安装 1.1 配置ubuntu国内源 修改/etc/apt/sources.list内容为 deb http: ...

  5. 调度器&负载均衡调度算法整理

    一.Linux 调度器   Linux中进程调度器已经经过很多次改进了,目前核心调度器是在CFS(Completely Fair Scheduler),从2.6.23开始被作为默认调度器.用作者Ing ...

  6. hadoop 环境配置

    HADOOP_HOME E:\tool\eclipse\hadoop-2.7.3 HADOOP_USER_NAME ambari-qa path: %HADOOP_HOME%/bin

  7. 官方文档 恢复备份指南四 Starting and Interacting with the RMAN Client

    本章讲: Starting and Exiting RMAN Specifying the Location of RMAN Output                                ...

  8. POJ 1703 Find them, Catch them(并查集拓展)

    Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...

  9. Week7 Teamework from Z.XML-任务分配

    任务分配 Z.XML任务初步分配新鲜出炉,请关注! 初步估计,我们的项目需要191小时.但是根据敏捷开发的方法,我们将在开发过程中根据情况迅速调整任务分配,以适应当时问题.

  10. JavaSE复习(五)网络编程

    客户端:java.net.Socket 类表示.创建Socket对象,向服务端发出连接请求,服务端响应请求,两者建立连接开始通信 服务端:java.net.ServerSocket 类表示.创建Ser ...