refinedet网络结构
refinedet只预测4个层,并且只有conv6_1、conv6_2,没有ssd中的conv7、8、9

refinedet的4个层都只有1个aspect ratio和1个min_size,所以每层每个点只有3个anchor,arm中做location的conv4_3_norm_mbox_loc等层都是3*4个channel,做confidence的conv4_3_norm_mbox_conf都是6个channel,因为这里变成了2分类,每个anchor必须要有negative和positive的概率
refinedet是两步都要回归bounding box的框,refinedet中的odm_loss就相当于ssd中的mbox_loss,mbox_loss获得了anchor的坐标后会加上回归再进行训练,odm_loss获得anchor的坐标后先要加上arm_loc的回归,再加odm_loc的回归,这样再去进行loss计算.
name: "vgg_1/8"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_value: 104.0
mean_value: 117.0
mean_value: 123.0
resize_param {
prob: 1.0
resize_mode: WARP
height:
width:
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source:"examples/cityscapes/cityscapes_train_lmdb"
batch_size:
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.10000000149
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.300000011921
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.699999988079
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.899999976158
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample:
max_trials:
}
label_map_file: "data/cityscapes/labelmap_cityscapes.prototxt"
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "conv6_1"
type: "Convolution"
bottom: "fc7"
top: "conv6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc"
top: "conv4_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm"
top: "conv4_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm"
top: "conv4_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 16.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 8.0
offset: 0.5
}
}
layer {
name: "conv5_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_loc"
top: "conv5_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_loc_perm"
top: "conv5_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_conf"
top: "conv5_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_conf_perm"
top: "conv5_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv5_3"
bottom: "data"
top: "conv5_3_norm_mbox_priorbox"
prior_box_param {
min_size: 32.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 16.0
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_loc_perm"
type: "Permute"
bottom: "fc7_mbox_loc"
top: "fc7_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_loc_flat"
type: "Flatten"
bottom: "fc7_mbox_loc_perm"
top: "fc7_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_conf"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_conf_perm"
type: "Permute"
bottom: "fc7_mbox_conf"
top: "fc7_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_conf_flat"
type: "Flatten"
bottom: "fc7_mbox_conf_perm"
top: "fc7_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 64.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 32.0
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm"
type: "Permute"
bottom: "conv6_2_mbox_loc"
top: "conv6_2_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm"
top: "conv6_2_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_conf"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm"
type: "Permute"
bottom: "conv6_2_mbox_conf"
top: "conv6_2_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm"
top: "conv6_2_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 128.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 64.0
offset: 0.5
}
}
layer {
name: "arm_loc"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat"
bottom: "conv5_3_norm_mbox_loc_flat"
bottom: "fc7_mbox_loc_flat"
bottom: "conv6_2_mbox_loc_flat"
top: "arm_loc"
concat_param {
axis:
}
}
layer {
name: "arm_conf"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat"
bottom: "conv5_3_norm_mbox_conf_flat"
bottom: "fc7_mbox_conf_flat"
bottom: "conv6_2_mbox_conf_flat"
top: "arm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "conv5_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
top: "arm_priorbox"
concat_param {
axis:
}
}
layer {
name: "P3_mbox_loc_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_loc_perm"
type: "Permute"
bottom: "P3_mbox_loc"
top: "P3_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_loc_flat"
type: "Flatten"
bottom: "P3_mbox_loc_perm"
top: "P3_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P3_mbox_conf_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_conf_perm"
type: "Permute"
bottom: "P3_mbox_conf"
top: "P3_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_conf_flat"
type: "Flatten"
bottom: "P3_mbox_conf_perm"
top: "P3_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_loc_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_loc_perm"
type: "Permute"
bottom: "P4_mbox_loc"
top: "P4_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_loc_flat"
type: "Flatten"
bottom: "P4_mbox_loc_perm"
top: "P4_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_conf_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_conf_perm"
type: "Permute"
bottom: "P4_mbox_conf"
top: "P4_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_conf_flat"
type: "Flatten"
bottom: "P4_mbox_conf_perm"
top: "P4_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_loc_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_loc_perm"
type: "Permute"
bottom: "P5_mbox_loc"
top: "P5_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_loc_flat"
type: "Flatten"
bottom: "P5_mbox_loc_perm"
top: "P5_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_conf_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_conf_perm"
type: "Permute"
bottom: "P5_mbox_conf"
top: "P5_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_conf_flat"
type: "Flatten"
bottom: "P5_mbox_conf_perm"
top: "P5_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_loc_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_loc_perm"
type: "Permute"
bottom: "P6_mbox_loc"
top: "P6_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_loc_flat"
type: "Flatten"
bottom: "P6_mbox_loc_perm"
top: "P6_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_conf_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_conf_perm"
type: "Permute"
bottom: "P6_mbox_conf"
top: "P6_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_conf_flat"
type: "Flatten"
bottom: "P6_mbox_conf_perm"
top: "P6_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "odm_loc"
type: "Concat"
bottom: "P3_mbox_loc_flat"
bottom: "P4_mbox_loc_flat"
bottom: "P5_mbox_loc_flat"
bottom: "P6_mbox_loc_flat"
top: "odm_loc"
concat_param {
axis:
}
}
layer {
name: "odm_conf"
type: "Concat"
bottom: "P3_mbox_conf_flat"
bottom: "P4_mbox_conf_flat"
bottom: "P5_mbox_conf_flat"
bottom: "P6_mbox_conf_flat"
top: "odm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_loss"
type: "MultiBoxLoss"
bottom: "arm_loc"
bottom: "arm_conf"
bottom: "arm_priorbox"
bottom: "label"
top: "arm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
}
layer {
name: "arm_conf_reshape"
type: "Reshape"
bottom: "arm_conf"
top: "arm_conf_reshape"
reshape_param {
shape {
dim:
dim: -
dim:
}
}
}
layer {
name: "arm_conf_softmax"
type: "Softmax"
bottom: "arm_conf_reshape"
top: "arm_conf_softmax"
softmax_param {
axis:
}
}
layer {
name: "arm_conf_flatten"
type: "Flatten"
bottom: "arm_conf_softmax"
top: "arm_conf_flatten"
flatten_param {
axis:
}
}
layer {
name: "odm_loss"
type: "MultiBoxLoss"
bottom: "odm_loc"
bottom: "odm_conf"
bottom: "arm_priorbox"
bottom: "label"
bottom: "arm_conf_flatten"
bottom: "arm_loc"
top: "odm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
} layer {
name: "conv1_1_t"
type: "Convolution"
bottom: "data"
top: "conv1_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1_t"
type: "ReLU"
bottom: "conv1_1_t"
top: "conv1_1_t"
}
layer {
name: "conv1_2_t"
type: "Convolution"
bottom: "conv1_1_t"
top: "conv1_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2_t"
type: "ReLU"
bottom: "conv1_2_t"
top: "conv1_2_t"
}
layer {
name: "pool1_t"
type: "Pooling"
bottom: "conv1_2_t"
top: "pool1_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1_t"
type: "Convolution"
bottom: "pool1_t"
top: "conv2_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1_t"
type: "ReLU"
bottom: "conv2_1_t"
top: "conv2_1_t"
}
layer {
name: "conv2_2_t"
type: "Convolution"
bottom: "conv2_1_t"
top: "conv2_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2_t"
type: "ReLU"
bottom: "conv2_2_t"
top: "conv2_2_t"
}
layer {
name: "pool2_t"
type: "Pooling"
bottom: "conv2_2_t"
top: "pool2_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1_t"
type: "Convolution"
bottom: "pool2_t"
top: "conv3_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1_t"
type: "ReLU"
bottom: "conv3_1_t"
top: "conv3_1_t"
}
layer {
name: "conv3_2_t"
type: "Convolution"
bottom: "conv3_1_t"
top: "conv3_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2_t"
type: "ReLU"
bottom: "conv3_2_t"
top: "conv3_2_t"
}
layer {
name: "conv3_3_t"
type: "Convolution"
bottom: "conv3_2_t"
top: "conv3_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3_t"
type: "ReLU"
bottom: "conv3_3_t"
top: "conv3_3_t"
}
layer {
name: "pool3_t"
type: "Pooling"
bottom: "conv3_3_t"
top: "pool3_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1_t"
type: "Convolution"
bottom: "pool3_t"
top: "conv4_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1_t"
type: "ReLU"
bottom: "conv4_1_t"
top: "conv4_1_t"
}
layer {
name: "conv4_2_t"
type: "Convolution"
bottom: "conv4_1_t"
top: "conv4_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2_t"
type: "ReLU"
bottom: "conv4_2_t"
top: "conv4_2_t"
}
layer {
name: "conv4_3_t"
type: "Convolution"
bottom: "conv4_2_t"
top: "conv4_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3_t"
type: "ReLU"
bottom: "conv4_3_t"
top: "conv4_3_t"
}
layer {
name: "pool4_t"
type: "Pooling"
bottom: "conv4_3_t"
top: "pool4_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1_t"
type: "Convolution"
bottom: "pool4_t"
top: "conv5_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_1_t"
type: "ReLU"
bottom: "conv5_1_t"
top: "conv5_1_t"
}
layer {
name: "conv5_2_t"
type: "Convolution"
bottom: "conv5_1_t"
top: "conv5_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_2_t"
type: "ReLU"
bottom: "conv5_2_t"
top: "conv5_2_t"
}
layer {
name: "conv5_3_t"
type: "Convolution"
bottom: "conv5_2_t"
top: "conv5_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_3_t"
type: "ReLU"
bottom: "conv5_3_t"
top: "conv5_3_t"
} layer {
name: "conv5_3_m"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_m"
propagate_down: true
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
} layer {
name: "relu5_3_m"
type: "ReLU"
bottom: "conv5_3_m"
top: "conv5_3_m"
} layer {
name: "roi_pool_t"
type: "ROIPooling"
bottom: "conv5_3_t"
bottom: "label"
top: "pool_t"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: false
propagate_down: false
}
layer {
name: "roi_pool_s"
type: "ROIPooling"
bottom: "conv5_3_m"
bottom: "label"
top: "pool_s"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: true
propagate_down: false
} layer {
name: "mimic_loss"
type: "EuclideanLoss"
bottom: "pool_t"
bottom: "pool_s"
top: "mimic_loss"
propagate_down: false
propagate_down: true
loss_weight:
include {
phase: TRAIN
}
}
refinedet网络结构的更多相关文章
- RefineDet算法笔记
---恢复内容开始--- 一.创新点 针对two-stage的速度慢以及one-stage精度不足提出的方法,refinedet 包括三个核心部分:使用TCB来转换ARM的特征,送入ODM中进行检测: ...
- 论文阅读 | RefineDet:Single-Shot Refinement Neural Network for Object Detection
论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR ...
- 目标检测之RefineDet
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detectio ...
- Sparse Filtering 学习笔记(一)网络结构与特征矩阵
Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...
- 深度神经网络结构以及Pre-Training的理解
Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\thet ...
- 受限玻尔兹曼机(RBM)学习笔记(二)网络结构
去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算 ...
- OpenWrt网络结构
原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
随机推荐
- Java基础26-对象初始化过程
/* 1.因为new Test1()用到了Test1类,所以会把它从硬盘上加载进入内存 2.如果有static静态代码块就会随着类的加载而执行,还有静态成员和普通方法也会随着类的加载而被加载 3.在堆 ...
- AutoFac之 Named and Keyed 方式注入
AutoFac是.net framework下一个高效的ioc容器,传说中的效率最快(我偷偷看了几篇测试博文,确实这个容器的效率遥遥领先). 好了废话不多说,AutoFac的使用方式请看:http:/ ...
- 在CentOS 7上搭建私有Docker仓库
Hub IP:10.0.2.6 操作系统:CentOS 7 64位 Docker版本:1.12.5Client IP:10.0.2.4 操作系统:CentOS 7 64位 Docker版本:1.12. ...
- 使用Serva通过网络PXE方式安装Windows10/CentOS
下载Servahttp://www.vercot.com/~serva/download.html也可以从本文附件下载Serva_Community_64_v3.0.0.zip,这是社区版,使用50m ...
- 九度oj题目1385:重建二叉树
题目1385:重建二叉树 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4419 解决:1311 题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和 ...
- 【Shell】运行shell出现-ash: ./test.sh: not found
1.这是一个读取文件的脚本 #!/bin/bash for line in `cat pidtestconf` do echo $line done 因为命名的时候这边使用的是 test.sh 这边将 ...
- AndroidManifest.xml配置文件详解(转载)
AndroidManifest.xml配置文件详解 2013-01-05 10:25:23 分类: Android平台 AndroidManifest.xml配置文件对于Android应用开发来说是 ...
- HashMap put、get方法源码分析
HashMap.java的实现是面试必问的问题. JDK版本 java version "1.8.0_91" Java(TM) SE Runtime Environment (bu ...
- WinSock Socket 池
之前在WinSock2.0 API 中说到,像DisConnectEx 函数这样,它具有回收SOCKET的功能,而像AcceptEx这样的函数,它不会自己在内部创建新的SOCKET,需要外部传入SOC ...
- 原生js获取手机定位信息
<script type="text/javascript"> function Location() {}; Location.prototype.getLocati ...