refinedet只预测4个层,并且只有conv6_1、conv6_2,没有ssd中的conv7、8、9

refinedet的4个层都只有1个aspect ratio和1个min_size,所以每层每个点只有3个anchor,arm中做location的conv4_3_norm_mbox_loc等层都是3*4个channel,做confidence的conv4_3_norm_mbox_conf都是6个channel,因为这里变成了2分类,每个anchor必须要有negative和positive的概率

refinedet是两步都要回归bounding box的框,refinedet中的odm_loss就相当于ssd中的mbox_loss,mbox_loss获得了anchor的坐标后会加上回归再进行训练,odm_loss获得anchor的坐标后先要加上arm_loc的回归,再加odm_loc的回归,这样再去进行loss计算.

name: "vgg_1/8"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_value: 104.0
mean_value: 117.0
mean_value: 123.0
resize_param {
prob: 1.0
resize_mode: WARP
height:
width:
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source:"examples/cityscapes/cityscapes_train_lmdb"
batch_size:
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.10000000149
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.300000011921
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.699999988079
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.899999976158
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample:
max_trials:
}
label_map_file: "data/cityscapes/labelmap_cityscapes.prototxt"
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "conv6_1"
type: "Convolution"
bottom: "fc7"
top: "conv6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc"
top: "conv4_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm"
top: "conv4_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm"
top: "conv4_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 16.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 8.0
offset: 0.5
}
}
layer {
name: "conv5_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_loc"
top: "conv5_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_loc_perm"
top: "conv5_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_conf"
top: "conv5_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_conf_perm"
top: "conv5_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv5_3"
bottom: "data"
top: "conv5_3_norm_mbox_priorbox"
prior_box_param {
min_size: 32.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 16.0
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_loc_perm"
type: "Permute"
bottom: "fc7_mbox_loc"
top: "fc7_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_loc_flat"
type: "Flatten"
bottom: "fc7_mbox_loc_perm"
top: "fc7_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_conf"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_conf_perm"
type: "Permute"
bottom: "fc7_mbox_conf"
top: "fc7_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_conf_flat"
type: "Flatten"
bottom: "fc7_mbox_conf_perm"
top: "fc7_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 64.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 32.0
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm"
type: "Permute"
bottom: "conv6_2_mbox_loc"
top: "conv6_2_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm"
top: "conv6_2_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_conf"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm"
type: "Permute"
bottom: "conv6_2_mbox_conf"
top: "conv6_2_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm"
top: "conv6_2_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 128.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 64.0
offset: 0.5
}
}
layer {
name: "arm_loc"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat"
bottom: "conv5_3_norm_mbox_loc_flat"
bottom: "fc7_mbox_loc_flat"
bottom: "conv6_2_mbox_loc_flat"
top: "arm_loc"
concat_param {
axis:
}
}
layer {
name: "arm_conf"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat"
bottom: "conv5_3_norm_mbox_conf_flat"
bottom: "fc7_mbox_conf_flat"
bottom: "conv6_2_mbox_conf_flat"
top: "arm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "conv5_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
top: "arm_priorbox"
concat_param {
axis:
}
}
layer {
name: "P3_mbox_loc_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_loc_perm"
type: "Permute"
bottom: "P3_mbox_loc"
top: "P3_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_loc_flat"
type: "Flatten"
bottom: "P3_mbox_loc_perm"
top: "P3_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P3_mbox_conf_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_conf_perm"
type: "Permute"
bottom: "P3_mbox_conf"
top: "P3_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_conf_flat"
type: "Flatten"
bottom: "P3_mbox_conf_perm"
top: "P3_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_loc_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_loc_perm"
type: "Permute"
bottom: "P4_mbox_loc"
top: "P4_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_loc_flat"
type: "Flatten"
bottom: "P4_mbox_loc_perm"
top: "P4_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_conf_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_conf_perm"
type: "Permute"
bottom: "P4_mbox_conf"
top: "P4_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_conf_flat"
type: "Flatten"
bottom: "P4_mbox_conf_perm"
top: "P4_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_loc_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_loc_perm"
type: "Permute"
bottom: "P5_mbox_loc"
top: "P5_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_loc_flat"
type: "Flatten"
bottom: "P5_mbox_loc_perm"
top: "P5_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_conf_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_conf_perm"
type: "Permute"
bottom: "P5_mbox_conf"
top: "P5_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_conf_flat"
type: "Flatten"
bottom: "P5_mbox_conf_perm"
top: "P5_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_loc_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_loc_perm"
type: "Permute"
bottom: "P6_mbox_loc"
top: "P6_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_loc_flat"
type: "Flatten"
bottom: "P6_mbox_loc_perm"
top: "P6_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_conf_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_conf_perm"
type: "Permute"
bottom: "P6_mbox_conf"
top: "P6_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_conf_flat"
type: "Flatten"
bottom: "P6_mbox_conf_perm"
top: "P6_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "odm_loc"
type: "Concat"
bottom: "P3_mbox_loc_flat"
bottom: "P4_mbox_loc_flat"
bottom: "P5_mbox_loc_flat"
bottom: "P6_mbox_loc_flat"
top: "odm_loc"
concat_param {
axis:
}
}
layer {
name: "odm_conf"
type: "Concat"
bottom: "P3_mbox_conf_flat"
bottom: "P4_mbox_conf_flat"
bottom: "P5_mbox_conf_flat"
bottom: "P6_mbox_conf_flat"
top: "odm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_loss"
type: "MultiBoxLoss"
bottom: "arm_loc"
bottom: "arm_conf"
bottom: "arm_priorbox"
bottom: "label"
top: "arm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
}
layer {
name: "arm_conf_reshape"
type: "Reshape"
bottom: "arm_conf"
top: "arm_conf_reshape"
reshape_param {
shape {
dim:
dim: -
dim:
}
}
}
layer {
name: "arm_conf_softmax"
type: "Softmax"
bottom: "arm_conf_reshape"
top: "arm_conf_softmax"
softmax_param {
axis:
}
}
layer {
name: "arm_conf_flatten"
type: "Flatten"
bottom: "arm_conf_softmax"
top: "arm_conf_flatten"
flatten_param {
axis:
}
}
layer {
name: "odm_loss"
type: "MultiBoxLoss"
bottom: "odm_loc"
bottom: "odm_conf"
bottom: "arm_priorbox"
bottom: "label"
bottom: "arm_conf_flatten"
bottom: "arm_loc"
top: "odm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
} layer {
name: "conv1_1_t"
type: "Convolution"
bottom: "data"
top: "conv1_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1_t"
type: "ReLU"
bottom: "conv1_1_t"
top: "conv1_1_t"
}
layer {
name: "conv1_2_t"
type: "Convolution"
bottom: "conv1_1_t"
top: "conv1_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2_t"
type: "ReLU"
bottom: "conv1_2_t"
top: "conv1_2_t"
}
layer {
name: "pool1_t"
type: "Pooling"
bottom: "conv1_2_t"
top: "pool1_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1_t"
type: "Convolution"
bottom: "pool1_t"
top: "conv2_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1_t"
type: "ReLU"
bottom: "conv2_1_t"
top: "conv2_1_t"
}
layer {
name: "conv2_2_t"
type: "Convolution"
bottom: "conv2_1_t"
top: "conv2_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2_t"
type: "ReLU"
bottom: "conv2_2_t"
top: "conv2_2_t"
}
layer {
name: "pool2_t"
type: "Pooling"
bottom: "conv2_2_t"
top: "pool2_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1_t"
type: "Convolution"
bottom: "pool2_t"
top: "conv3_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1_t"
type: "ReLU"
bottom: "conv3_1_t"
top: "conv3_1_t"
}
layer {
name: "conv3_2_t"
type: "Convolution"
bottom: "conv3_1_t"
top: "conv3_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2_t"
type: "ReLU"
bottom: "conv3_2_t"
top: "conv3_2_t"
}
layer {
name: "conv3_3_t"
type: "Convolution"
bottom: "conv3_2_t"
top: "conv3_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3_t"
type: "ReLU"
bottom: "conv3_3_t"
top: "conv3_3_t"
}
layer {
name: "pool3_t"
type: "Pooling"
bottom: "conv3_3_t"
top: "pool3_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1_t"
type: "Convolution"
bottom: "pool3_t"
top: "conv4_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1_t"
type: "ReLU"
bottom: "conv4_1_t"
top: "conv4_1_t"
}
layer {
name: "conv4_2_t"
type: "Convolution"
bottom: "conv4_1_t"
top: "conv4_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2_t"
type: "ReLU"
bottom: "conv4_2_t"
top: "conv4_2_t"
}
layer {
name: "conv4_3_t"
type: "Convolution"
bottom: "conv4_2_t"
top: "conv4_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3_t"
type: "ReLU"
bottom: "conv4_3_t"
top: "conv4_3_t"
}
layer {
name: "pool4_t"
type: "Pooling"
bottom: "conv4_3_t"
top: "pool4_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1_t"
type: "Convolution"
bottom: "pool4_t"
top: "conv5_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_1_t"
type: "ReLU"
bottom: "conv5_1_t"
top: "conv5_1_t"
}
layer {
name: "conv5_2_t"
type: "Convolution"
bottom: "conv5_1_t"
top: "conv5_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_2_t"
type: "ReLU"
bottom: "conv5_2_t"
top: "conv5_2_t"
}
layer {
name: "conv5_3_t"
type: "Convolution"
bottom: "conv5_2_t"
top: "conv5_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_3_t"
type: "ReLU"
bottom: "conv5_3_t"
top: "conv5_3_t"
} layer {
name: "conv5_3_m"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_m"
propagate_down: true
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
} layer {
name: "relu5_3_m"
type: "ReLU"
bottom: "conv5_3_m"
top: "conv5_3_m"
} layer {
name: "roi_pool_t"
type: "ROIPooling"
bottom: "conv5_3_t"
bottom: "label"
top: "pool_t"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: false
propagate_down: false
}
layer {
name: "roi_pool_s"
type: "ROIPooling"
bottom: "conv5_3_m"
bottom: "label"
top: "pool_s"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: true
propagate_down: false
} layer {
name: "mimic_loss"
type: "EuclideanLoss"
bottom: "pool_t"
bottom: "pool_s"
top: "mimic_loss"
propagate_down: false
propagate_down: true
loss_weight:
include {
phase: TRAIN
}
}

refinedet网络结构的更多相关文章

  1. RefineDet算法笔记

    ---恢复内容开始--- 一.创新点 针对two-stage的速度慢以及one-stage精度不足提出的方法,refinedet 包括三个核心部分:使用TCB来转换ARM的特征,送入ODM中进行检测: ...

  2. 论文阅读 | RefineDet:Single-Shot Refinement Neural Network for Object Detection

    论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR ...

  3. 目标检测之RefineDet

    RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detectio ...

  4. Sparse Filtering 学习笔记(一)网络结构与特征矩阵

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  5. 深度神经网络结构以及Pre-Training的理解

    Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\thet ...

  6. 受限玻尔兹曼机(RBM)学习笔记(二)网络结构

      去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算 ...

  7. OpenWrt网络结构

    原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的 ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  9. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

随机推荐

  1. logrtate 切割详解

    Logrotate是Linux下一款日志管理工具,可用于日志文件的转储(即删除旧日志文件,创建新日志文件).可以根据日志大小或者按照某时段间隔来转储,内部使用cron程序来执行.Logrotate还可 ...

  2. pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple

    pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple 快速下载

  3. [转]JQuery控制div外点击隐藏,div内点击不会隐藏

    一直弄清楚这个效果如何实现,看了这篇博客的几行代码原来如此简单,就是利用了事件冒泡而已. 比如有个div其id为body,实现在div外点击隐藏,div内点击不隐藏,采用jQuery实现如下: $(& ...

  4. Unity游戏项目常见性能问题

    Unity技术支持团队经常会对有需求的客户公司项目进行游戏项目性能审查与优化,在我们碰到过的各种项目相关的问题中也有很多比较共同的方面,这里我们罗列了一些常见的问题并进行了归类,开发者朋友们可以参考下 ...

  5. 小型Basic编译器问题

    # include <stdio.h> # include <string.h> # include <ctype.h> # include <stdlib. ...

  6. Oracle 数据类型详解

    数据类型(datatype)是列(column)或存储过程中的一个属性. Oracle支持的数据类型可以分为三个基本种类:字符数据类型.数字数据类型以及表示其它数据的数据类型. 字符数据类型 CHAR ...

  7. bzoj 5314: [Jsoi2018]潜入行动

    Description 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY已经联系好了黄金舰队,打算联合所有JSO Ier抵御外星人的进攻.在黄金舰队就位之前,JYY打算事先了解外星人 ...

  8. jQuery plugin: Tablesorter 2.0

    http://mottie.github.io/tablesorter/docs/example-pager.htmlhttp://tablesorter.com/docs/example-pager ...

  9. shutil模块——高级的文件、文件夹、压缩包处理模块

    将文件内容拷贝到另一个文件 shutil.copyfileobj('fsrc', 'fdst', 'length') 方法源码: def copyfileobj(fsrc, fdst, length= ...

  10. TopcoderSRM679 Div1 250 FiringEmployees(树形dp)

    题意 [题目链接]这怎么发链接啊..... 有一个 \(n\) 个点的树,每个点有点权(点权可能为负) ,求包含点\(1\)的最 大权连通子图(的权值和) . \(n \leqslant 2500\) ...