refinedet网络结构
refinedet只预测4个层,并且只有conv6_1、conv6_2,没有ssd中的conv7、8、9
refinedet的4个层都只有1个aspect ratio和1个min_size,所以每层每个点只有3个anchor,arm中做location的conv4_3_norm_mbox_loc等层都是3*4个channel,做confidence的conv4_3_norm_mbox_conf都是6个channel,因为这里变成了2分类,每个anchor必须要有negative和positive的概率
refinedet是两步都要回归bounding box的框,refinedet中的odm_loss就相当于ssd中的mbox_loss,mbox_loss获得了anchor的坐标后会加上回归再进行训练,odm_loss获得anchor的坐标后先要加上arm_loc的回归,再加odm_loc的回归,这样再去进行loss计算.
name: "vgg_1/8"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_value: 104.0
mean_value: 117.0
mean_value: 123.0
resize_param {
prob: 1.0
resize_mode: WARP
height:
width:
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source:"examples/cityscapes/cityscapes_train_lmdb"
batch_size:
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.10000000149
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.300000011921
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.699999988079
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.899999976158
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample:
max_trials:
}
label_map_file: "data/cityscapes/labelmap_cityscapes.prototxt"
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "conv6_1"
type: "Convolution"
bottom: "fc7"
top: "conv6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc"
top: "conv4_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm"
top: "conv4_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm"
top: "conv4_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 16.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 8.0
offset: 0.5
}
}
layer {
name: "conv5_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_loc"
top: "conv5_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_loc_perm"
top: "conv5_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_conf"
top: "conv5_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_conf_perm"
top: "conv5_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv5_3"
bottom: "data"
top: "conv5_3_norm_mbox_priorbox"
prior_box_param {
min_size: 32.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 16.0
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_loc_perm"
type: "Permute"
bottom: "fc7_mbox_loc"
top: "fc7_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_loc_flat"
type: "Flatten"
bottom: "fc7_mbox_loc_perm"
top: "fc7_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_conf"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_conf_perm"
type: "Permute"
bottom: "fc7_mbox_conf"
top: "fc7_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_conf_flat"
type: "Flatten"
bottom: "fc7_mbox_conf_perm"
top: "fc7_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 64.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 32.0
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm"
type: "Permute"
bottom: "conv6_2_mbox_loc"
top: "conv6_2_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm"
top: "conv6_2_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_conf"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm"
type: "Permute"
bottom: "conv6_2_mbox_conf"
top: "conv6_2_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm"
top: "conv6_2_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 128.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 64.0
offset: 0.5
}
}
layer {
name: "arm_loc"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat"
bottom: "conv5_3_norm_mbox_loc_flat"
bottom: "fc7_mbox_loc_flat"
bottom: "conv6_2_mbox_loc_flat"
top: "arm_loc"
concat_param {
axis:
}
}
layer {
name: "arm_conf"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat"
bottom: "conv5_3_norm_mbox_conf_flat"
bottom: "fc7_mbox_conf_flat"
bottom: "conv6_2_mbox_conf_flat"
top: "arm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "conv5_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
top: "arm_priorbox"
concat_param {
axis:
}
}
layer {
name: "P3_mbox_loc_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_loc_perm"
type: "Permute"
bottom: "P3_mbox_loc"
top: "P3_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_loc_flat"
type: "Flatten"
bottom: "P3_mbox_loc_perm"
top: "P3_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P3_mbox_conf_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_conf_perm"
type: "Permute"
bottom: "P3_mbox_conf"
top: "P3_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_conf_flat"
type: "Flatten"
bottom: "P3_mbox_conf_perm"
top: "P3_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_loc_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_loc_perm"
type: "Permute"
bottom: "P4_mbox_loc"
top: "P4_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_loc_flat"
type: "Flatten"
bottom: "P4_mbox_loc_perm"
top: "P4_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_conf_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_conf_perm"
type: "Permute"
bottom: "P4_mbox_conf"
top: "P4_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_conf_flat"
type: "Flatten"
bottom: "P4_mbox_conf_perm"
top: "P4_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_loc_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_loc_perm"
type: "Permute"
bottom: "P5_mbox_loc"
top: "P5_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_loc_flat"
type: "Flatten"
bottom: "P5_mbox_loc_perm"
top: "P5_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_conf_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_conf_perm"
type: "Permute"
bottom: "P5_mbox_conf"
top: "P5_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_conf_flat"
type: "Flatten"
bottom: "P5_mbox_conf_perm"
top: "P5_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_loc_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_loc_perm"
type: "Permute"
bottom: "P6_mbox_loc"
top: "P6_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_loc_flat"
type: "Flatten"
bottom: "P6_mbox_loc_perm"
top: "P6_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_conf_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_conf_perm"
type: "Permute"
bottom: "P6_mbox_conf"
top: "P6_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_conf_flat"
type: "Flatten"
bottom: "P6_mbox_conf_perm"
top: "P6_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "odm_loc"
type: "Concat"
bottom: "P3_mbox_loc_flat"
bottom: "P4_mbox_loc_flat"
bottom: "P5_mbox_loc_flat"
bottom: "P6_mbox_loc_flat"
top: "odm_loc"
concat_param {
axis:
}
}
layer {
name: "odm_conf"
type: "Concat"
bottom: "P3_mbox_conf_flat"
bottom: "P4_mbox_conf_flat"
bottom: "P5_mbox_conf_flat"
bottom: "P6_mbox_conf_flat"
top: "odm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_loss"
type: "MultiBoxLoss"
bottom: "arm_loc"
bottom: "arm_conf"
bottom: "arm_priorbox"
bottom: "label"
top: "arm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
}
layer {
name: "arm_conf_reshape"
type: "Reshape"
bottom: "arm_conf"
top: "arm_conf_reshape"
reshape_param {
shape {
dim:
dim: -
dim:
}
}
}
layer {
name: "arm_conf_softmax"
type: "Softmax"
bottom: "arm_conf_reshape"
top: "arm_conf_softmax"
softmax_param {
axis:
}
}
layer {
name: "arm_conf_flatten"
type: "Flatten"
bottom: "arm_conf_softmax"
top: "arm_conf_flatten"
flatten_param {
axis:
}
}
layer {
name: "odm_loss"
type: "MultiBoxLoss"
bottom: "odm_loc"
bottom: "odm_conf"
bottom: "arm_priorbox"
bottom: "label"
bottom: "arm_conf_flatten"
bottom: "arm_loc"
top: "odm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
} layer {
name: "conv1_1_t"
type: "Convolution"
bottom: "data"
top: "conv1_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1_t"
type: "ReLU"
bottom: "conv1_1_t"
top: "conv1_1_t"
}
layer {
name: "conv1_2_t"
type: "Convolution"
bottom: "conv1_1_t"
top: "conv1_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2_t"
type: "ReLU"
bottom: "conv1_2_t"
top: "conv1_2_t"
}
layer {
name: "pool1_t"
type: "Pooling"
bottom: "conv1_2_t"
top: "pool1_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1_t"
type: "Convolution"
bottom: "pool1_t"
top: "conv2_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1_t"
type: "ReLU"
bottom: "conv2_1_t"
top: "conv2_1_t"
}
layer {
name: "conv2_2_t"
type: "Convolution"
bottom: "conv2_1_t"
top: "conv2_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2_t"
type: "ReLU"
bottom: "conv2_2_t"
top: "conv2_2_t"
}
layer {
name: "pool2_t"
type: "Pooling"
bottom: "conv2_2_t"
top: "pool2_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1_t"
type: "Convolution"
bottom: "pool2_t"
top: "conv3_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1_t"
type: "ReLU"
bottom: "conv3_1_t"
top: "conv3_1_t"
}
layer {
name: "conv3_2_t"
type: "Convolution"
bottom: "conv3_1_t"
top: "conv3_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2_t"
type: "ReLU"
bottom: "conv3_2_t"
top: "conv3_2_t"
}
layer {
name: "conv3_3_t"
type: "Convolution"
bottom: "conv3_2_t"
top: "conv3_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3_t"
type: "ReLU"
bottom: "conv3_3_t"
top: "conv3_3_t"
}
layer {
name: "pool3_t"
type: "Pooling"
bottom: "conv3_3_t"
top: "pool3_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1_t"
type: "Convolution"
bottom: "pool3_t"
top: "conv4_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1_t"
type: "ReLU"
bottom: "conv4_1_t"
top: "conv4_1_t"
}
layer {
name: "conv4_2_t"
type: "Convolution"
bottom: "conv4_1_t"
top: "conv4_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2_t"
type: "ReLU"
bottom: "conv4_2_t"
top: "conv4_2_t"
}
layer {
name: "conv4_3_t"
type: "Convolution"
bottom: "conv4_2_t"
top: "conv4_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3_t"
type: "ReLU"
bottom: "conv4_3_t"
top: "conv4_3_t"
}
layer {
name: "pool4_t"
type: "Pooling"
bottom: "conv4_3_t"
top: "pool4_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1_t"
type: "Convolution"
bottom: "pool4_t"
top: "conv5_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_1_t"
type: "ReLU"
bottom: "conv5_1_t"
top: "conv5_1_t"
}
layer {
name: "conv5_2_t"
type: "Convolution"
bottom: "conv5_1_t"
top: "conv5_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_2_t"
type: "ReLU"
bottom: "conv5_2_t"
top: "conv5_2_t"
}
layer {
name: "conv5_3_t"
type: "Convolution"
bottom: "conv5_2_t"
top: "conv5_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_3_t"
type: "ReLU"
bottom: "conv5_3_t"
top: "conv5_3_t"
} layer {
name: "conv5_3_m"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_m"
propagate_down: true
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
} layer {
name: "relu5_3_m"
type: "ReLU"
bottom: "conv5_3_m"
top: "conv5_3_m"
} layer {
name: "roi_pool_t"
type: "ROIPooling"
bottom: "conv5_3_t"
bottom: "label"
top: "pool_t"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: false
propagate_down: false
}
layer {
name: "roi_pool_s"
type: "ROIPooling"
bottom: "conv5_3_m"
bottom: "label"
top: "pool_s"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: true
propagate_down: false
} layer {
name: "mimic_loss"
type: "EuclideanLoss"
bottom: "pool_t"
bottom: "pool_s"
top: "mimic_loss"
propagate_down: false
propagate_down: true
loss_weight:
include {
phase: TRAIN
}
}
refinedet网络结构的更多相关文章
- RefineDet算法笔记
---恢复内容开始--- 一.创新点 针对two-stage的速度慢以及one-stage精度不足提出的方法,refinedet 包括三个核心部分:使用TCB来转换ARM的特征,送入ODM中进行检测: ...
- 论文阅读 | RefineDet:Single-Shot Refinement Neural Network for Object Detection
论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR ...
- 目标检测之RefineDet
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detectio ...
- Sparse Filtering 学习笔记(一)网络结构与特征矩阵
Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...
- 深度神经网络结构以及Pre-Training的理解
Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\thet ...
- 受限玻尔兹曼机(RBM)学习笔记(二)网络结构
去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算 ...
- OpenWrt网络结构
原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
随机推荐
- mysql 配置文件详解
mysql配置文件参数详解 (一) [client]port = 3306socket = /tmp/mysql.sock [mysqld]port = 3306socket = /tmp/mysql ...
- .NET平台常用框架整理
基于.NET平台常用的框架整理 转自:http://www.cnblogs.com/hgmyz/p/5313983.html 首先谢谢楼主,以后备用 自从学习.NET以来,优雅的编程风格,极度简单 ...
- JS的从理解对象到创建对象
JavaScript不是一门真正的面向对象语言,因为它连最基本的类的概念都没有,因此它的对象和基于类的语言中的对象也会有所不同.ECMA-262把对象定义为:“无序属性的集合,其属性可以包含基本值.对 ...
- 原生js与jquery的区别
1.选择器: js: $('.car_img_con img')[0]; var jsObj = document.getElementsByClassName('sel_index_block')[ ...
- 新版本火狐 ,Chrome不支持showModalDialog解决办法
平常的网站中,有时我们会希望使用者按下按钮后开启一个保持在原窗口前方的子窗口,在IE中,我们可以使用showModalDialog来达成,但是chrome早就不支持showModalDialog,最近 ...
- 在 Azure 中创建静态 HTML Web 应用
Azure Web 应用提供高度可缩放.自修补的 Web 托管服务. 本快速入门教程演示如何将基本 HTML+CSS 站点部署到 Azure Web 应用. 使用 Azure CLI 创建 Web 应 ...
- unity3D使用C#遍历场景内所有元素进行操作
最近入门Unity3D,跟着教程做完了survival射击游戏,就想加一个功能,就是按一个按钮屏幕上的怪物都清空. 如图右下角所示. 我的方法是赋予所有怪物一个标签Tag,然后根据标签销毁Gameob ...
- Csharp: Detect Mobile Browsers
/// <summary> /// 檢測手機客戶端 HttpCapabilitiesBase.IsMobileDevice /// .NET 4.5 /// 塗聚文注 /// </s ...
- CMDB认识和需求分析
一.认识ITIL ITIL即IT基础架构库(Information Technology Infrastructure Library,信息技术基础架构库)由英国政府部门CCTA(Central ...
- configparser模块——配置文档
configparser模块用于生成和修改常见配置文档. 预制配置文件:conf.ini [DEFAULT] ServerAliveInterval = 45 Compression = yes Co ...