[UOJ300]吉夫特
直接上lucas定理,可以得到$\binom nm=1$等价于$m$是$n$的子集(二进制)
因为数字两两不同,所以设$f_i$表示以$i$开头的满足要求的序列有多少个,转移就是$f_i\gets f_j+1(j\subset i,\text{pos}_j\gt\text{pos}_i)$,除了以$j$开头的子序列还可以单独把$j$接在$i$后
#include<stdio.h>
const int mod=1000000007,N=233334;
void inc(int&a,int b){(a+=b)%=mod;}
int p[N],f[N];
int main(){
int n,i,j,s;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&j);
p[j]=i;
}
s=0;
for(i=1;i<N;i++){
if(p[i]){
for(j=i&(i-1);j;j=(j-1)&i){
if(p[j]>p[i])inc(f[i],f[j]+1);
}
inc(s,f[i]);
}
}
printf("%d",s);
}
[UOJ300]吉夫特的更多相关文章
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- 【BZOJ4903/UOJ300】【CTSC2017】吉夫特
Description 传送门 简述题意:给一个序列,询问有多少子序列满足其中不会出现\(a\choose b\)是偶数的情况,其中\(a\)在\(b\)前面. Solution 首先探究组合数的 ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- 【BZOJ4903】【CTSC2017】吉夫特 [DP]
吉夫特 Time Limit: 15 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行一个整数n. 接下 ...
- CTSC2017密钥、吉夫特
自己是有多么sb. 密钥 大家都说这是一道普及-的题,一年前我做不起,我可以说我太弱啦,我就普及组水平,今年我还是做不起…… 看大佬题解都是:开个桶就好啦! 我:你在说什么…… 首先把环拉成链,倍长. ...
- 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...
- [CTSC2017]吉夫特
Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...
随机推荐
- org.json与json-lib的区别(补充 FastJson)
org.json 是JSON国际组织官方推出的标准json解析方案,已经被 android sdk 纳入到标准内置类库,依赖项少,但直至API17版本SDK中,仅支持JSONObject与JSONAr ...
- 如何用PhotoShop制作网站的favicon.ico
所谓favicon,即Favorites Icon的缩写,顾名思义,便是其可以让浏览器的收藏夹中除显示相应的标题外,还以图标的方式区别不同的网站.当然,这不仅仅是Favicon的全部,根据浏览器的不同 ...
- POJ1182:食物链(并查集)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 94930 Accepted: 28666 Description ...
- white-space——处理元素内的空白
定义和用法 white-space 属性设置如何处理元素内的空白.这个属性声明建立布局过程中如何处理元素中的空白符.值 pre-wrap 和 pre-line 是 CSS 2.1 中新增的. 默认 ...
- im4java学习---阅读documentation文档
Utilities----im提供的一些工具类 ①.读取图片文件信息---Info类 我们之前的做法: op.format("width:%w,height:%h,path:%d%f,siz ...
- Windows下安装Mycat
Mycat 首先在安装Mycat之前,需要安装JDK1.7以上,可以在cmd环境下输入 java -version 查看本地安装的java版本 如果未安装或者版本在1.7以下,请重新安装. 安装JDK ...
- Nginx使用教程----提高Nginx网络吞吐量之buffers优化
请求缓冲区在NGINX请求处理中起着重要作用. 在接收到请求时,NGINX将其写入这些缓冲区. 这些缓冲区中的数据可作为NGINX变量使用,例如$request_body. 如果缓冲区与请求大小相比较 ...
- 最适合初学者学习的idea教程
https://github.com/judasn/IntelliJ-IDEA-Tutorial
- 【比赛】百度之星2017 初赛Round A
第一题 题意:给定多组数据P,每次询问P进制下,有多少数字B满足条件:只要数位之和是B的倍数,该数字就是B的倍数. 题解:此题是参考10进制下3和9倍数的特殊性质. 对于10进制,ab=10*a+b= ...
- 【mysql优化】大数据量分页优化
limit 翻页原理 limit offset,N, 当offset非常大时, 效率极低, 原因是mysql并不是跳过offset行,然后单取N行, 而是取offset+N行,返回放弃前offset行 ...