[UOJ300]吉夫特
直接上lucas定理,可以得到$\binom nm=1$等价于$m$是$n$的子集(二进制)
因为数字两两不同,所以设$f_i$表示以$i$开头的满足要求的序列有多少个,转移就是$f_i\gets f_j+1(j\subset i,\text{pos}_j\gt\text{pos}_i)$,除了以$j$开头的子序列还可以单独把$j$接在$i$后
#include<stdio.h>
const int mod=1000000007,N=233334;
void inc(int&a,int b){(a+=b)%=mod;}
int p[N],f[N];
int main(){
int n,i,j,s;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&j);
p[j]=i;
}
s=0;
for(i=1;i<N;i++){
if(p[i]){
for(j=i&(i-1);j;j=(j-1)&i){
if(p[j]>p[i])inc(f[i],f[j]+1);
}
inc(s,f[i]);
}
}
printf("%d",s);
}
[UOJ300]吉夫特的更多相关文章
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- 【BZOJ4903/UOJ300】【CTSC2017】吉夫特
Description 传送门 简述题意:给一个序列,询问有多少子序列满足其中不会出现\(a\choose b\)是偶数的情况,其中\(a\)在\(b\)前面. Solution 首先探究组合数的 ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- 【BZOJ4903】【CTSC2017】吉夫特 [DP]
吉夫特 Time Limit: 15 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行一个整数n. 接下 ...
- CTSC2017密钥、吉夫特
自己是有多么sb. 密钥 大家都说这是一道普及-的题,一年前我做不起,我可以说我太弱啦,我就普及组水平,今年我还是做不起…… 看大佬题解都是:开个桶就好啦! 我:你在说什么…… 首先把环拉成链,倍长. ...
- 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...
- [CTSC2017]吉夫特
Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...
随机推荐
- POJ2594:Treasure Exploration(Floyd + 最小路径覆盖)
Treasure Exploration Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 9794 Accepted: 3 ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- eclipse console输出有长度限制
抓取一个网页内容,然后打印到控制台,发现内容首部都没有了. String content = getResponseText("http://xxx.html"); System. ...
- CORS服务端跨域
跨域,通常情况下是说在两个不通过的域名下面无法进行正常的通信,或者说是无法获取其他域名下面的数据,这个主要的原因是,浏览器出于安全问题的考虑,采用了同源策略,通过浏览器对JS的限制,防止恶意用户获取非 ...
- org.apache.http.conn.HttpHostConnectException: Connection to xxx refused.
if you are using emulator to run your app for local server. mention the local ip as 10.0.2.2 and hav ...
- bzoj 3190 维护栈
我们可以将每一辆赛车看成一条直线,斜率为速度,纵截距为初始位置,那么问题就转化为求这n条直线处于最上面的直线.最上面是指在坐标系中,假设从x轴向下看,能看到的直线,只露一个点也算能看见.那么就类似水平 ...
- wiki 2490 导弹拦截塔
2013-09-23 21:16 二分答案+匈牙利判断 对于每一个时间,我们重新建一张二分图,由于每个塔可能打多次,所以要拆点, 对于每个拆的点的可行飞行距离为(mid-t1)-(ll-1)*(t1+ ...
- CTL_CODE说明
DeviceIoControl函数的第二个参数IoControlCode就是由CTL_CODE宏定义的,下边我们可以了解一下CTL_CODE的内容. CTL_CODE:用于创建一个唯一的32位系统I/ ...
- 【转】spring 装配Bean中构造参数的注入
转载自:http://www.bianceng.cn/Programming/Java/201307/37027.htm spring 装配Bean中构造参数的注入 spring装配bean中还有一种 ...
- Linux下文件的三个时间意义及用法
Linux下文件的三个时间参数: (1)modification time(mtime):内容修改时间 这里的修改时间指的是文件的内容发生变化,而更新的时间. (2)change tim ...