非常nice的一道行列式的题目。

考虑如果没有路径不相交这个限制的话,那么这个题就是一个行列式:设 a[i][j] 为从编号第i小的源点到编号第j小的汇点的路径条数,那么矩阵a[][]的行列式就是的答案,因为行列式的定义就是给行一个列的排列,贡献就是所有a[i][p[i]]再乘上 (-1)^(p[] 这个排列的逆序对数).

但是路径不相交就很恶心。。。。根本没法分开算嘛。。。。

不过逆序对可是有一个特殊性质的: 如果把 p[i] 和 p[j] swap一下,那么这个排列的逆序对数的变化值一定是奇数。

这个不难证明,因为仅有权值和下标都在交换的两个数的中间的那些数会产生逆序对变化,但是变化都是双倍的,所以仅有 (p[i].p[j]) 造成了 +/- 1的影响是奇数。

然后我们可以发现两条相交的路径 (a,b) , (c,d) 我们把交点后面的路径 swap 一下,那么就是 (a,d) , (c,b)了,原理就是上述了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<ctime>
#define ll long long
using namespace std;
const int maxn=605;
int a[maxn][maxn],hd[maxn],num,f[maxn];
int to[maxn*100],ne[maxn*100],X,Y,d[maxn];
int id[maxn],od[maxn],n,m,p,dy[maxn];
int ans=1; inline void addline(int x,int y){ id[y]++,od[x]++,to[++num]=y,ne[num]=hd[x],hd[x]=num;}
inline int add(int x,int y){ x+=y; return x>=p?x-p:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=p) x-=p;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;}
inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=mul(x,x,p)) if(y&1) an=mul(an,x,p);
return an;
} inline void build(int u){
queue<int> q; int x;
for(int i=1;i<=n;i++) if(!id[i]) q.push(i); memcpy(d,id,sizeof(id)); while(!q.empty()){
x=q.front(),q.pop();
// cout<<x<<' '<<f[x]<<endl;
for(int i=hd[x];i;i=ne[i]){
ADD(f[to[i]],f[x]);
if(!(--d[to[i]])) q.push(to[i]);
}
} for(int i=1;i<=n;i++) if(!od[i]) a[u][dy[i]]=f[i];
} inline void xy(){
/*
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) printf("%d ",a[i][j]);
puts("");
}
*/ for(int i=1,inv,tmp;i<=n;i++){
if(!a[i][i]){
ans=p-ans;
for(int j=i+1;j<=n;j++) if(a[j][i]){
for(int k=i;k<=n;k++) swap(a[i][k],a[j][k]);
break;
}
} ans=mul(ans,a[i][i],p);
inv=ksm(a[i][i],p-2); for(int j=i+1;j<=n;j++) if(a[j][i]){
tmp=a[j][i]*(ll)inv%(const int)p;
for(int k=i;k<=n;k++) ADD(a[j][k],p-mul(a[i][k],tmp,p));
}
}
} inline void solve(){
for(int i=1;i<=n;i++) if(!od[i]) dy[i]=++Y;
for(int i=1;i<=n;i++) if(!id[i]){
memset(f,0,sizeof(f)),f[i]=1;
X++,build(X);
} /*
for(int i=1;i<=X;i++){
for(int j=1;j<=X;j++) printf("%d ",a[i][j]);
puts("");
}
*/ n=X,xy();
} int main(){
freopen("orzcyr.in","r",stdin);
freopen("orzcyr.out","w",stdout); scanf("%d%d%d",&n,&m,&p); int uu,vv;
while(m--) scanf("%d%d",&uu,&vv),addline(uu,vv); solve(); printf("%d\n",ans);
// cout<<X<<' '<<Y<<endl;
return 0;
}

  

某考试 T2 orzcyr的更多相关文章

  1. 9.13 考试 T2 区间

    删区间 题意: 给出一个长度为

  2. 某考试T2 frog

    题目背景 无 题目描述 数轴上有 n 只青蛙,分别编号为 1 到 n.青蛙 i 的初始位置的坐标为 xi. 它们准备进行如下形式的移动:每轮包括 m 次跳跃,第 i 次跳跃由青蛙 ai(1 < ...

  3. 某考试 T2 Tree

    2 树 2.1 题目描述 给一棵n 个节点的树,节点分别编号为0 到n - 1.你可以通过如下的操作来修改这棵树:首先先删去树上的一条边,此时树会分裂为两个连通块,然后在两个连通块之间加上一条新的边使 ...

  4. 某考试 T2 yja

    2.1 Description 在平面上找 n 个点, 要求这 n 个点离原点的距离分别为 r1, r2, ..., rn. 最大化这 n 个点构成的凸包面积, 凸包上的点的顺序任意. 2.2 Inp ...

  5. 题解 2020.10.24 考试 T2 选数

    题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...

  6. 2019.3.7考试T2 离线数论??

    $ \color{#0066ff}{ 题目描述 }$ 一天,olinr 在 luogu.org 刷题,一点提交,等了一分钟之后,又蛙又替. olinr 发动了他的绝招,说:"为啥啊???&q ...

  7. 2019.2.26考试T2 矩阵快速幂加速DP

    \(\color{#0066ff}{题解 }\) 可以发现, 数据范围中的n特别小,容易想到状压 可以想到类似于状压DP的思路,按列进行转移 那么应该有3维,\(f[i][j][k]\)代表到第i列, ...

  8. 2019.2.10考试T2, 多项式求exp+生成函数

    \(\color{#0066ff}{ 题目描述 }\) 为了减小文件大小,这里不写一堆题目背景了. 请写一个程序,输入一个数字N,输出N个点的森林的数量.点有标号. 森林是一种无向图,要求图中不能存在 ...

  9. 某考试 T2 Seg

    Seg [问题描述]数轴上有n条线段,第i条线段的左端点是a[i],右端点是b[i].Bob发现1~2n共2n个整数点,每个点都是某条线段的端点.这些线段有如下两类特点:1 x y,表示第x条线段和第 ...

随机推荐

  1. The XOR Largest Pair [Trie]

    描述 在给定的N个整数A1,A2--AN中选出两个进行xor运算,得到的结果最大是多少? 输入格式 第一行一个整数N,第二行N个整数A1-AN. 输出格式 一个整数表示答案. 样例输入 3 1 2 3 ...

  2. SCOI2010 传送带 [三分/模拟退火]

    题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...

  3. linux之scp命令

    linux之cp/scp命令+scp命令详解   名称:cp 使用权限:所有使用者 使用方式: cp [options] source dest cp [options] source... dire ...

  4. 迅雷Bolt图像拉伸不清晰的解决办法

    迅雷Bolt库中的图像拉伸的效果锯齿比较严重,常见的导致锯齿的情况: 1.在使用ImageObject时,drawmode为1拉伸模式下: 2.使用Bitmap类的Stretch函数拉伸图像: 虽然I ...

  5. jw player笔记二----修改logo

    一.修改HTML5模式下的logo 见http://blog.csdn.net/xiong_mao_1/article/details/17222757 二.修改FLASH模式下的logo IE7/8 ...

  6. mybatis 关系映射

    一:订单商品数据模型 1.数据库执行脚本 创建数据库表代码: 1 CREATE TABLE items ( 2 id INT NOT NULL AUTO_INCREMENT, 3 itemsname ...

  7. 【poj3420】递推式转矩阵乘法

    历史性的时刻!!! 推了一晚上!和hyc一起萌萌哒地推出来了!! 被摧残蹂躏的智商啊!!! 然而炒鸡高兴!! (请不要介意蒟蒻的内心独白..) 设a[i]为扫到第i行时的方案数. 易知,对于一行1*4 ...

  8. [bzoj1031][JSOI2007]字符加密Cipher——后缀数组

    Brief Description 给定一个长度为n的字符串,你需要对其进行加密. 把字符串围成一个环 显然从任意一个位置开始都可以有一个长度为n的串 把产生的n个串按字典序排序,把这n个串的最后一个 ...

  9. 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】

    转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...

  10. JS 判断某变量是否为某数组中的一个值 的几种方法

    1.正则表达式 js 中判断某个元素是否存在于某个 js 数组中,相当于 PHP 语言中的 in_array 函数. }; 用法如下: var arr=new Array([‘b’,2,‘a‘,4]) ...