我们用DP来解决这个问题

W[I,J]表示准考证的第I位,和不吉利的数匹配到了第J位的方案数,这个状态的表示也可以看成

当前到第I位了,准考证的后J位是不吉利的数的前J位,的方案数

那么我们最后的ans=ΣW[N,I]  0<=I<=M-1

那么我们考虑怎么转移

假设当前到第I位了,匹配到第J位,也就是W[I,J]的值我们有了,我们可以枚举第I+1位是什么,

然后通过KMP的NEXT数组可以快速的得到当前枚举的位可以匹配到第几位,假设可以匹配到第P位,

那么我们W[I+1,P]+=W[I,J],这样就可以转移了

但是我们看N的数据范围是10^9,所以递推是完不成的,这时候需要观察下规律

我们发现转移时的P,J和I是没有关系的,也就是不管I是几,W[I,J]固定会加到W[I+1,K]上

所以我们换一种转移的方式,之前是用W[I,J]更新W[I+1,P],现在我们可以写成

W[I,J]=a0*W[I-1,0]+a1*W[I-1,1]+......+a(m-1)*W[I-1,M-1]

而且ai数组是不变的,那么这个式子就是常系数线性齐次递推式(新买的书上把这个式子叫这个。。),

然后我们可以用矩阵乘法加速,在log级别中求出ans

/**************************************************************
    Problem:
    User: BLADEVIL
    Language: Pascal
    Result: Accepted
    Time: ms
    Memory: kb
****************************************************************/
 
//By BLADEVIL
type   
    rec                     =array[..,..] of longint;
     
var
    s                       :ansistring;
    pre                     :array[..] of longint;
    n, m, d39               :longint;
    sum, ans                :rec;
    cur                     :longint;
     
procedure init;
var
    i, j, k                 :longint;
    c                       :ansistring;
begin
    readln(n,m,d39);
    readln(s);
    j:=;
    for i:= to m do
    begin
        while (s[i]<>s[j+]) and (j<>) do j:=pre[j];
        if s[i]=s[j+] then
        begin
            inc(j);
            pre[i]:=j;
        end;
    end;
     
    for i:= to m- do
        for j:= to do
        begin
            str(j,c);
            k:=i;
            while (s[k+]<>c) and (k<>) do k:=pre[k];
            if s[k+]=c then inc(k);
            inc(sum[i,k]);
        end;
end;
 
function mul(a,b:rec):rec;
var
    i, j, l                 :longint;
begin
    fillchar(mul,sizeof(mul),);
    for i:= to m- do
        for j:= to m- do
            for l:= to m- do mul[i,j]:=(mul[i,j]+a[i,l]*b[l,j]) mod d39;
     
end;
 
procedure main;
var
    p                       :longint;
    i                       :longint;
begin
    for i:= to m do ans[i,i]:=;
    p:=n;
    while p<> do
    begin
        if p mod = then ans:=mul(ans,sum);
        p:=p div ;
        sum:=mul(sum,sum);
    end;
    for i:= to m- do cur:=(cur+ans[,i]) mod d39;
    writeln(cur);
end;
 
begin
    init;
    main;
end.

bzoj 1009 DP+矩阵加速的更多相关文章

  1. bzoj 1009 DP 矩阵优化

    原来的DP: dp[i][j]表示长度为i的合法串,并且它的长度为j的后缀是给定串的长度为j的前缀. 转移: i==0 dp[0][0] = 1 dp[0][1~m-1] = 0 i>=1 dp ...

  2. bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】

    首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...

  3. HDU 5564 Clarke and digits 状压dp+矩阵加速

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5564 题意: 求长度在[L,R]范围,并且能整除7的整数的总数. 题解: 考虑最原始的想法: dp[ ...

  4. Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks dp+矩阵加速

    题目链接: http://codeforces.com/problemset/problem/621/E E. Wet Shark and Blocks time limit per test2 se ...

  5. P5343 【XR-1】分块(dp矩阵加速)

    \(大意是用数组a里的数字,组成一个序列,使得序列和为n的方案种数\)传送门 \(先考虑dp.\) \(但是不能直接用背包转移,因为是序列,要考虑顺序.\) \(所以,为了去重,我们令dp[i][j] ...

  6. bzoj2004公交线路——DP+矩阵加速递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 求方案数,想到DP: 因为两个站间距离<=p,所以每p个站中所有车一定都会停靠至 ...

  7. [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...

  8. BZOJ 1875(DP+矩阵快速幂)

    题面 传送门 分析 容易想到根据点来dp,设dp[i][j]表示到i点路径长度为j的方案数 状态转移方程为dp[i][k]=∑(i,j)∈Edp[j][k−1]" role="pr ...

  9. AC日记——[HNOI2008]GT考试 bzoj 1009

    1009 思路: KMP上走DP(矩阵加速): DP[i][j]表示当前在第i位,同是匹配到不吉利串的第j位的方案数: 代码: #include <bits/stdc++.h> using ...

随机推荐

  1. Python|花了一天,为大家整理的一套来自外国大佬的密码速查表

    简单的HTTPS服务器 检查证书信息 输出 生成自签名证书 输出 准备一个签名注册请求 输出 生成无密码的RSA秘钥文件 用一个私钥给文件签名 输出 从签名验证一个文件 输出 通过pem文件做RSA加 ...

  2. 搭建高可用的Eureka注册中心

    搭建高可用的Eureka注册中心 一.搭建高可用的Eureka的作用 当服务器因种种原因导致Eureka注册中心(后面简称Eureka)服务当机(服务器跪了,异常关闭停止服务).这样就会影响到整个业务 ...

  3. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  4. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  5. 关闭电脑自带键盘(copy)

    用管理员身份运行cmd: 禁用笔记本键盘 sc config i8042prt start= disabled 启用笔记本键盘 sc config i8042prt start= auto

  6. onkeypress,onkeyup,onkeydown区别

    onkeypress 这个事件在用户按下并放开任何字母数字键时发生.系统按钮(例如,箭头键和功能键)无法得到识别. onkeyup 这个事件在用户放开任何先前按下的键盘键时发生. onkeydown ...

  7. Java中IO——NIO

    一.引入 当引入一些新功能的时候,那说明之前的设计可能还需要完善. 1.阻塞式 在传统的IO输入输出中,如果我们从流中去读数据,而数据源中没有数据时,程序就会阻塞该线程.阻塞式线程的一种基本状态,可以 ...

  8. Hibernate关联映射之_多对一

    多对一 Employee-Department 对于 员工 和 部门 两个对象,从员工的角度来看,就是多对一的一个关系--->多个员工对应一个部门 表设计: 部门表:department,id主 ...

  9. P2127 序列排序

    题目描述 小C有一个N个数的整数序列,这个序列的中的数两两不同.小C每次可以交换序列中的任意两个数,代价为这两个数之和.小C希望将整个序列升序排序,问小C需要的最小代价是多少? 输入输出格式 输入格式 ...

  10. [luogu2617]Dynamic Rankings

    题面在这里 description 动态区间第\(k\)大 data range \[n,m\le 10000,a_i,t\le 1e^9\] solution 前置技能:主席树,静态区间第\(k\) ...