题目传送门

题意:

  给出 n 个数,q次区间查询,每次查询,让你选择任意个下标为 [ l , r ] 区间内的任意数,使这些数异或起来最大,输出最大值。

思路:离线加线性基。

线性基学习博客1

线性基学习博客2

对于此题,先把区间按照 r 从小到大排序,然后依次处理这些区间,每次插入线性基时,优先保留下标比较大的线性基。查询时,只异或上下标大于 l 的值。

记住异或的符号的优先级很低,所以  if( res^p[i] > res )这样的代码是会wa死的,要注意(这道题这么写,样例都过不了)

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=5e5+;
int a[maxn],q,n,p[],pos[],ans[maxn];
struct node{
int l,r,id;
friend bool operator<(const node &a,const node &b)
{
return a.r<b.r;
}
}op[maxn];
void init(){
clr(p,);
}
void add(int val,int id){
for(int i=;i>=;i--)
{
if(val&(<<i))
{
if(!p[i]){
p[i]=val,pos[i]=id;
break;
}
if(pos[i]<id){
swap(pos[i],id),swap(val,p[i]);
}
val^=p[i];
}
}
}
int query(int l)
{
int res=;
for(int i=;i>=;i--)
{
if(pos[i]>=l)
{
if((res^p[i])>res)
{
res=res^p[i];
}
}
}
return res;
}
int main(){
while(cin>>n)
{
init();
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
cin>>q;
for(int i=;i<=q;i++)
{
scanf("%d%d",&op[i].l,&op[i].r);
op[i].id=i;
}
sort(op+,op++q);
int l=;
for(int i=;i<=q;i++)
{
while(l<=op[i].r&&l<=n)
{
add(a[l],l);
l++;
}
ans[op[i].id]=query(op[i].l);
}
for(int i=;i<=q;i++)
{
printf("%d\n",ans[i]);
}
}
}

codeforces 1100F Ivan and Burgers 线性基 离线的更多相关文章

  1. CodeForces 1100F Ivan and Burgers

    CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...

  2. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  3. 【题解】 Codeforces 662A Gambling Nim (线性基)

    662A,戳我戳我 Solution: 我们先取\(ans=a[1] \bigoplus a[2] \bigoplus ... \bigoplus a[n]\),然后我们定义\(c[i]=a[i] \ ...

  4. CodeForces - 1100F:Ivan and Burgers (线性基&贪心)(离线 在线)

    题意:给定N个数,Q次询问,求区间最大异或和. 思路:一开始想的线性基+线段树.单次线性基合并的复杂度为20*20,结合线段树,复杂度为O(NlogN*20*20):显然,超时. 超时代码: #inc ...

  5. Codeforces1100F. Ivan and Burgers(离线+线性基)

    题目链接:传送门 思路: 按查询的右端点离线. 然后从左到右维护线性基. 每个基底更新为最右边的方案,可以让尽量多的查询享受到这个基底. 用ci维护后更新右端点为i的答案. 代码(析构1000ms,别 ...

  6. F. Ivan and Burgers(线性基,离线)

    题目链接:http://codeforces.com/contest/1100/problem/F 题目大意:首先输入n,代表当前有n个数,然后再输入m,代表m次询问,每一次询问是询问区间[l,r], ...

  7. Codeforces Round #532 (Div. 2):F. Ivan and Burgers(贪心+异或基)

    F. Ivan and Burgers 题目链接:https://codeforces.com/contest/1100/problem/F 题意: 给出n个数,然后有多个询问,每次回答询问所给出的区 ...

  8. Codeforces Round #532 (Div. 2) F 线性基(新坑) + 贪心 + 离线处理

    https://codeforces.com/contest/1100/problem/F 题意 一个有n个数组c[],q次询问,每次询问一个区间的子集最大异或和 题解 单问区间子集最大异或和,线性基 ...

  9. Codeforces 1100F(线性基+贪心)

    题目链接 题意 给定序列,$q(1\leq q \leq 100000) $次询问,每次查询给定区间内的最大异或子集. 思路 涉及到最大异或子集肯定从线性基角度入手.将询问按右端点排序后离线处理询问, ...

随机推荐

  1. mongo_2 $in 和 $all 区别

    in 只需满足( )内的某一个值即可, 而$all 必须满足[ ]内的所有值, > db.table1.find({}); { "_id" : ObjectId(" ...

  2. Zend Studio 10汉化方法

    选择Help菜单->Install New Software...在Work with框中复制此地址:http://download.eclipse.org/technology/babel/u ...

  3. datatables01 安装、数据源、选中行事件、新增一行数据、删除一行数据

    1 安装 1.1 引入必要文件 要在项目中使用datatables需要引入三个文件 >DataTables CSS >jQuery >DataTables JS <!-- Da ...

  4. JAVA环境安装配置

    dk1.6 64位是 Java 语言的软件开发工具包,主要用于移动设备.嵌入式设备上的java应用程序. jdk1.6 64位安装教程 jdk1.6 64位JDK的安装路径:D:\Program Fi ...

  5. 453. Minimum Moves to Equal Array Elements 一次改2个数,变成统一的

    [抄题]: Given a non-empty integer array of size n, find the minimum number of moves required to make a ...

  6. RocketMq2

  7. [redis]redis-cluster搭建

    1.概述: redis是一种工作在内存里no-sql的非关系型数据库,广泛应用于缓存需求,以减少大量的数据访问对数据库的压力,还很适合用来充当整个互联网架构中各级之间的cache 比如lvs的4层转发 ...

  8. mvc全局过滤器和httpmodule的执行顺序

    根据http管线模型,请求先通过httpmodule,再通过httphandler,之后再进入mvc的过滤器 另外参考:MVC如何在Pipeline中接管请求的? http://www.cnblogs ...

  9. 第18章-使用WebSocket和STOMP实现消息功能

    Spring 4.0为WebSocket通信提供了支持,包括: 发送和接收消息的低层级API: 发送和接收消息的高级API: 用来发送消息的模板: 支持SockJS,用来解决浏览器端.服务器以及代理不 ...

  10. JavaEE互联网轻量级框架整合开发(书籍)阅读笔记(7):装配SpringBean·依赖注入装配

    一.依赖注入的三种方式      在实际环境中实现IoC容器的方式主要分为两大类,一类是依赖查找,依赖查找是通过资源定位,把对应的资源查找回来.另一类则是依赖注入.一般而言,依赖注入可分为3中方式: ...