题目

  1. Moving Pebbles Two players play the following game. At the beginning of the game they start with n (1<=n<=100000) piles of stones. At each step of the game, the player chooses a pile and remove at least one stone from this pile and move zero or more stones from this pile to any other pile that still has stones. A player loses if he has no more possible moves. Given the initial piles, determine who wins: the first player, or the second player, if both play perfectly. 给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了…

输入格式

Each line of input has integers 0 < n <= 100000, followed by n positive integers denoting the initial piles.

输出格式

For each line of input, output “first player” if first player can force a win, or “second player”, if the second player can force a win.

输入样例

3 2 1 3

输出样例

first player

题解

博弈论的题目总是很神(shao)奇(nao)。。。。

但想清楚总是很简单

①根据博弈的套路,当石子堆两两配对,后手猥琐模仿先手,先手必败

②根据本题特点,石子可以拿取后自由移动;

1、若为奇数,一定不是两两配对,那么先手就可以取掉一点并移动使得堆数-1且两两配对

2、若为偶数,且不两两配对,那么先手可以通过一定操作使得两两配对

综上:只要一开始不是两两配对,先手必胜,否则必败

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],n;
int main(){
n = RD();
if (n & 1) {puts("first player"); return 0;}
REP(i,n){
A[i] = RD();
if (i % 2 == 0 && A[i] != A[i - 1]) {puts("first player"); return 0;}
}
puts("second player");
return 0;
}

BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】的更多相关文章

  1. Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论

    1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 88[Submi ...

  2. BZOJ 1982: [Spoj 2021]Moving Pebbles [博弈论 对称]

    给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了... 以前在poj做过已经忘记了... 构造对称,选最多的一堆往其他堆分 ...

  3. BZOJ 1982 [Spoj 2021]Moving Pebbles(博弈论)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1982 [题目大意] 两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头, 然后移动任意 ...

  4. [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告

    这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...

  5. bzoj 1982: [Spoj 2021]Moving Pebbles【博弈论】

    必败状态是n为偶数并且数量相同的石子堆可以两两配对,因为这样后手可以模仿先手操作 其他状态一定可以由先手给后手一步拼出一个必败状态(用最大堆补) #include<iostream> #i ...

  6. BZOJ 1982 / Luogu SP2021: [Spoj 2021]Moving Pebbles (找平衡状态)

    这道题在论文里看到过,直接放论文原文吧 在BZOJ上是单组数据,而且数据范围符合,直接int读入排序就行了.代码: #include <cstdio> #include <algor ...

  7. [SPOJ2021] Moving Pebbles

    [SPOJ2021] Moving Pebbles 题目大意:给你\(N\)堆\(Stone\),两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就 ...

  8. 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles

    E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...

  9. [bzoj1982]Moving Pebbles

    首先发现当n堆石子可以两两配对时,后手必胜,因为后手可以模仿先手那么当n堆石子不能两两配对时,先手必胜,因为先手可以做到让其两两配对,然后即先手必胜 这个东西用map维护即可 1 #include&l ...

随机推荐

  1. Angular : IOC的方式:依赖注入

    依赖注入 @Component, @Injectable 可以允许别的声明在providers里面的Service等注入到被这两个装饰器装饰的类中 Service等可以被声明在app-module.t ...

  2. python-映射·字典

    1.创建字典:字典由键值对组成,每个键值对就是字典的一个元素,键值对之间用分号(:)隔开,元素之间用逗号(,)隔开.字典中的键必须是唯一 且不可变得(不可以是列表或者字典).字典中的元素是无序的. d ...

  3. 洛谷P4016 负载平衡问题

    题目描述 G 公司有 n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入输出格式 输入格式: ...

  4. 12 TCP服务器 进程 线程 非阻塞

    1.单进程服务器 from socket import * serSocket = socket(AF_INET, SOCK_STREAM) # 重复使用绑定的信息 serSocket.setsock ...

  5. 高德API+.NET解决租房问题(可能是最可靠房源:上海互助租房)

    作者:李国宝链接:https://zhuanlan.zhihu.com/p/22113421来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. PS:最近点赞和关注的小伙伴 ...

  6. TFTP & commons-net-3.3.jar

    项目需求:上传文件到服务器,TFTP 了解TFTP http://wenku.baidu.com/link?url=MhRVgIySotFMkm5ar6B71zROPMoqC7cd5cSbKJo2kx ...

  7. 29、phonegap入门

    0. PhoneGap介绍 0.1  什么是PhoneGap? PhoneGap是一个基于HTML.CSS.JS创建跨平台移动应程序的快速开发平台.与传统Web应用不同的是,它使开发者能够利用iPho ...

  8. tomcat 异常

    Removing obsolete files from server... Could not clean server of obsolete files: null java.lang.Null ...

  9. 适用于Linux的windows子系统

    Windows基于图形界面的易用性是有目共睹的,这也是很多普通用户往往难以舍弃的原因.但是Linux系统更强大的网络应用开发能力,却又是Windows系统所无法比拟的.一直以来,很多人都在试图采用各种 ...

  10. Qt Qwdget 汽车仪表知识点拆解1 速度表示

    先贴上效果图,注意,没有写逻辑,所以这些都是乱动的 这里线主要说一下中间显示速度的显示制作的方式,在这里,自己专门写了一个数字的仪表 考虑的一般的汽车是没有办法把瞬时速度提升到四位数的,所以我这里就放 ...