Problem Description
Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a strong hero in the first period of the game. When the game goes to end however, Pudge is not a strong hero any more.
So Pudge’s teammates give him a new assignment—Eat the Trees!

The trees are in a rectangle N * M cells in size and each of the cells either has exactly one tree or has nothing at all. And what Pudge needs to do is to eat all trees that are in the cells.
There are several rules Pudge must follow:
I. Pudge must eat the trees by choosing a circuit and he then will eat all trees that are in the chosen circuit.
II. The cell that does not contain a tree is unreachable, e.g. each of the cells that is through the circuit which Pudge chooses must contain a tree and when the circuit is chosen, the trees which are in the cells on the circuit will disappear.
III. Pudge may choose one or more circuits to eat the trees.

Now Pudge has a question, how many ways are there to eat the trees?
At the picture below three samples are given for N = 6 and M = 3(gray square means no trees in the cell, and the bold black line means the chosen circuit(s))

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains the integer numbers N and M, 1<=N, M<=11. Each of the next N lines contains M numbers (either 0 or 1) separated by a space. Number 0 means a cell which has no trees and number 1 means a cell that has exactly one tree.
 
Output
For each case, you should print the desired number of ways in one line. It is guaranteed, that it does not exceed 263 – 1. Use the format in the sample.
 
题目大意:用任意多个回路覆盖矩阵上的1.
思路:插头DP,参考IOI国家集训队论文,陈丹琦的《基于连通性状态压缩的动态规划问题》
 
代码(62MS)(普通推,一大堆无用状态):
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL; const int MAXN = ; int mat[MAXN][MAXN];
LL dp[MAXN][MAXN][ << MAXN];
int n, m, T; LL solve() {
memset(dp, , sizeof(dp));
dp[][m][] = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j < ( << m); ++j) dp[i][][j << ] = dp[i - ][m][j];
for(int k = ; k <= m; ++k) {
for(int state = ; state < ( << (m + )); ++state) {
int y = << k, x = y >> ;
if(mat[i][k]) {
if((state & x) && (state & y)) {
dp[i][k][state] = dp[i][k - ][state - x - y];
} else if((state & x) == && (state & y) == ) {
dp[i][k][state] = dp[i][k - ][state + x + y];
} else dp[i][k][state] = dp[i][k - ][state ^ x ^ y] + dp[i][k - ][state];
} else {
if((state & x) == && (state & y) == ) {
dp[i][k][state] = dp[i][k - ][state];
} else dp[i][k][state] = ;
}
}
}
}
return dp[n][m][];
} int main() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &mat[i][j]);
printf("Case %d: There are %I64d ways to eat the trees.\n", t, solve());
}
}

代码(0MS)(hash)(下面代码是lld的……):

 #include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL; const int MAXH = ;
const int SIZEH = ; struct hash_map {
int head[SIZEH];
int next[MAXH], state[MAXH];
LL val[MAXH];
int size; void init() {
memset(head, -, sizeof(head));
size = ;
} void insert(int st, LL sv) {
int h = st % SIZEH;
for(int p = head[h]; ~p; p = next[p]) {
if(state[p] == st) {
val[p] += sv;
return ;
}
}
state[size] = st; val[size] = sv; next[size] = head[h]; head[h] = size++;
}
} hashmap[]; int getB(int state, int i) {
return (state >> i) & ;
} void setB(int &state, int i, int val) {
state = (state & ~( << i)) | (val << i);
} int mat[][];
int n, m, T;
hash_map *cur, *last; void update(int state, LL val, int x, int y) {
int left = getB(state, y);
int up = getB(state, y + );
if(mat[x][y] == ) {
if(left == && up == ) cur->insert(state, val);
return ;
}
if(left == && up == ) {
if(x < n - && y < m - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} else if(left == || up == ) {
if(x < n - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
if(y < m - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} else {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} LL solve() {
cur = hashmap, last = hashmap + ;
last->init();
last->insert(, );
for(int i = ; i < n; ++i) {
int sz = last->size;
for(int k = ; k < sz; ++k) last->state[k] <<= ;
for(int j = ; j < m; ++j) {
cur->init();
sz = last->size;
for(int k = ; k < sz; ++k)
update(last->state[k], last->val[k], i, j);
swap(cur, last);
}
}
for(int k = ; k < last->size; ++k)
if(last->state[k] == ) return last->val[k];
return ;
} int main() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &m);
for(int i = ; i < n; ++i)
for(int j = ; j < m; ++j) scanf("%d", &mat[i][j]);
printf("Case %d: There are %lld ways to eat the trees.\n", t, solve());
}
}

HDU 1693 Eat the Trees(插头DP,入门题)的更多相关文章

  1. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  2. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  3. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  4. hdu1693 Eat the Trees [插头DP经典例题]

    想当初,我听见大佬们谈起插头DP时,觉得插头DP是个神仙的东西. 某大佬:"考场见到插头DP,直接弃疗." 现在,我终于懂了他们为什么这么说了. 因为-- 插头DP很毒瘤! 为什么 ...

  5. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  6. HDU1693 Eat the Trees 插头dp

    原文链接http://www.cnblogs.com/zhouzhendong/p/8433484.html 题目传送门 - HDU1693 题意概括 多回路经过所有格子的方案数. 做法 最基础的插头 ...

  7. hdu 1693 : Eat the Trees 【插头dp 入门】

    题目链接 题意: 给出一个n*m大小的01矩阵,在其中画线连成封闭图形,其中对每一个值为1的方格,线要恰好穿入穿出共两次,对每一个值为0的方格,所画线不能经过. 参考资料: <基于连通性状态压缩 ...

  8. HDU - 1693 Eat the Trees(多回路插头DP)

    题目大意:要求你将全部非障碍格子都走一遍,形成回路(能够多回路),问有多少种方法 解题思路: 參考基于连通性状态压缩的动态规划问题 - 陈丹琦 下面为代码 #include<cstdio> ...

  9. HDU 1693 Eat the Trees (插头DP)

    题意:给一个n*m的矩阵,为1时代表空格子,为0时代表障碍格子,问如果不经过障碍格子,可以画一至多个圆的话,有多少种方案?(n<12,m<12) 思路: 这题不需要用到最小表示法以及括号表 ...

随机推荐

  1. Angularjs 数据双向绑定

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  2. 轻量ORM-SqlRepoEx (一)SqlRepoEx介绍

    一.SqlRepo项目 发现SqlRepo项目库是在构建自动代码工具时.对于数据访问,在.Net下,有很多选择,比如EF,但EF使用起来,不是很方便的.以前一直使用Atk.Expression库+Sy ...

  3. RabbitMQ消息中间件极速入门与实战

    1:初识RabbitMQ RabbitMQ是一个开源的消息代理和队列服务器,用来通过普通协议在完全不同的应用之间共享数据,RabbitMQ是使用Erlang语言来编写的,并且RabbitMQ是基于AM ...

  4. 选择客栈(noip2011 day1 t2)

    题目描述 丽江河边有 n 家很有特色的客栈,客栈按照其位置顺序从 1 到 nn n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k−1 表示),且每家客栈都设有一家咖啡店,每 ...

  5. Django url处理

    Django如何处理一个请求当一个用户请求Django 站点的一个页面,下面是Django 系统决定执行哪个Python 代码遵循的算法:1:Django 决定要使用的根URLconf 模块.通常,这 ...

  6. <逆向学习第三天>手动脱FSG壳,修复IAT。

    其实对于简单的壳来说,脱壳常用的方法也无非是那几种,但是每种有每种的好处,具体使用那种方法视情况而定,我今天学习的这个壳很简单,但是重点在于修复IAT. 一.查壳: FSG 2.0的壳. 二.脱壳: ...

  7. Spring Boot2.4双数据源的配置

    相较于单数据源,双数据源配置有时候在数据分库的时候可能更加有利 但是在参考诸多博客以及书籍(汪云飞的实战书)的时候,发现对于spring boot1.X是完全没问题的,一旦切换到spring boot ...

  8. MAC系统如何显示隐藏文件解决方法

    苹果Mac OS 操作系统下,隐藏文件默认为隐藏状态,隐藏文件是否显示有多种方法可以设置. 方法一: 打开终端,输入命令行 1.显示Mac隐藏文件的命令: defaults write com.app ...

  9. ethereum(以太坊)(基础)--容易忽略的坑(二)

    pragma solidity ^0.4.0; contract EMath{ string public _a="lin"; function f() public{ modif ...

  10. 利用html2canvas将当前网页保存为图片.

    先分析下这个技术可实现的方式,以及优缺点吧! 前端实现 缺点是:兼容性查,需要高级浏览器支持,因为需要支持 canvas 绘图,还有就是会操作 html5 canvas api.(如果不会使用canv ...