Problem Description
Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a strong hero in the first period of the game. When the game goes to end however, Pudge is not a strong hero any more.
So Pudge’s teammates give him a new assignment—Eat the Trees!

The trees are in a rectangle N * M cells in size and each of the cells either has exactly one tree or has nothing at all. And what Pudge needs to do is to eat all trees that are in the cells.
There are several rules Pudge must follow:
I. Pudge must eat the trees by choosing a circuit and he then will eat all trees that are in the chosen circuit.
II. The cell that does not contain a tree is unreachable, e.g. each of the cells that is through the circuit which Pudge chooses must contain a tree and when the circuit is chosen, the trees which are in the cells on the circuit will disappear.
III. Pudge may choose one or more circuits to eat the trees.

Now Pudge has a question, how many ways are there to eat the trees?
At the picture below three samples are given for N = 6 and M = 3(gray square means no trees in the cell, and the bold black line means the chosen circuit(s))

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains the integer numbers N and M, 1<=N, M<=11. Each of the next N lines contains M numbers (either 0 or 1) separated by a space. Number 0 means a cell which has no trees and number 1 means a cell that has exactly one tree.
 
Output
For each case, you should print the desired number of ways in one line. It is guaranteed, that it does not exceed 263 – 1. Use the format in the sample.
 
题目大意:用任意多个回路覆盖矩阵上的1.
思路:插头DP,参考IOI国家集训队论文,陈丹琦的《基于连通性状态压缩的动态规划问题》
 
代码(62MS)(普通推,一大堆无用状态):
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL; const int MAXN = ; int mat[MAXN][MAXN];
LL dp[MAXN][MAXN][ << MAXN];
int n, m, T; LL solve() {
memset(dp, , sizeof(dp));
dp[][m][] = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j < ( << m); ++j) dp[i][][j << ] = dp[i - ][m][j];
for(int k = ; k <= m; ++k) {
for(int state = ; state < ( << (m + )); ++state) {
int y = << k, x = y >> ;
if(mat[i][k]) {
if((state & x) && (state & y)) {
dp[i][k][state] = dp[i][k - ][state - x - y];
} else if((state & x) == && (state & y) == ) {
dp[i][k][state] = dp[i][k - ][state + x + y];
} else dp[i][k][state] = dp[i][k - ][state ^ x ^ y] + dp[i][k - ][state];
} else {
if((state & x) == && (state & y) == ) {
dp[i][k][state] = dp[i][k - ][state];
} else dp[i][k][state] = ;
}
}
}
}
return dp[n][m][];
} int main() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &mat[i][j]);
printf("Case %d: There are %I64d ways to eat the trees.\n", t, solve());
}
}

代码(0MS)(hash)(下面代码是lld的……):

 #include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL; const int MAXH = ;
const int SIZEH = ; struct hash_map {
int head[SIZEH];
int next[MAXH], state[MAXH];
LL val[MAXH];
int size; void init() {
memset(head, -, sizeof(head));
size = ;
} void insert(int st, LL sv) {
int h = st % SIZEH;
for(int p = head[h]; ~p; p = next[p]) {
if(state[p] == st) {
val[p] += sv;
return ;
}
}
state[size] = st; val[size] = sv; next[size] = head[h]; head[h] = size++;
}
} hashmap[]; int getB(int state, int i) {
return (state >> i) & ;
} void setB(int &state, int i, int val) {
state = (state & ~( << i)) | (val << i);
} int mat[][];
int n, m, T;
hash_map *cur, *last; void update(int state, LL val, int x, int y) {
int left = getB(state, y);
int up = getB(state, y + );
if(mat[x][y] == ) {
if(left == && up == ) cur->insert(state, val);
return ;
}
if(left == && up == ) {
if(x < n - && y < m - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} else if(left == || up == ) {
if(x < n - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
if(y < m - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} else {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, val);
}
} LL solve() {
cur = hashmap, last = hashmap + ;
last->init();
last->insert(, );
for(int i = ; i < n; ++i) {
int sz = last->size;
for(int k = ; k < sz; ++k) last->state[k] <<= ;
for(int j = ; j < m; ++j) {
cur->init();
sz = last->size;
for(int k = ; k < sz; ++k)
update(last->state[k], last->val[k], i, j);
swap(cur, last);
}
}
for(int k = ; k < last->size; ++k)
if(last->state[k] == ) return last->val[k];
return ;
} int main() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &m);
for(int i = ; i < n; ++i)
for(int j = ; j < m; ++j) scanf("%d", &mat[i][j]);
printf("Case %d: There are %lld ways to eat the trees.\n", t, solve());
}
}

HDU 1693 Eat the Trees(插头DP,入门题)的更多相关文章

  1. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  2. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  3. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  4. hdu1693 Eat the Trees [插头DP经典例题]

    想当初,我听见大佬们谈起插头DP时,觉得插头DP是个神仙的东西. 某大佬:"考场见到插头DP,直接弃疗." 现在,我终于懂了他们为什么这么说了. 因为-- 插头DP很毒瘤! 为什么 ...

  5. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  6. HDU1693 Eat the Trees 插头dp

    原文链接http://www.cnblogs.com/zhouzhendong/p/8433484.html 题目传送门 - HDU1693 题意概括 多回路经过所有格子的方案数. 做法 最基础的插头 ...

  7. hdu 1693 : Eat the Trees 【插头dp 入门】

    题目链接 题意: 给出一个n*m大小的01矩阵,在其中画线连成封闭图形,其中对每一个值为1的方格,线要恰好穿入穿出共两次,对每一个值为0的方格,所画线不能经过. 参考资料: <基于连通性状态压缩 ...

  8. HDU - 1693 Eat the Trees(多回路插头DP)

    题目大意:要求你将全部非障碍格子都走一遍,形成回路(能够多回路),问有多少种方法 解题思路: 參考基于连通性状态压缩的动态规划问题 - 陈丹琦 下面为代码 #include<cstdio> ...

  9. HDU 1693 Eat the Trees (插头DP)

    题意:给一个n*m的矩阵,为1时代表空格子,为0时代表障碍格子,问如果不经过障碍格子,可以画一至多个圆的话,有多少种方案?(n<12,m<12) 思路: 这题不需要用到最小表示法以及括号表 ...

随机推荐

  1. 初学oracle遇到些小麻烦

    前段时间学习了Oracle数据库,在超级用户sys下运行一些基本语句的时候都没有发现有什么问题,但是却发现不能执行删除字段的的命令,老师检查说可能是权限不够,但是在授权之后依旧不能完成该语句,所以就另 ...

  2. bootstrap到底是用来做什么的

    Bootstrap官网:http://v3.bootcss.com/ Bootstrap是Twitter推出的一个用于前端开发的开源工具包.它由Twitter的设计师Mark Otto和Jacob T ...

  3. iframe优缺点

    优点:重载页面时不需要重载整个页面,只需要重载页面中的一个框架页(减少了数据的传输,加快了网页下载速度)

  4. Windows登录密码明文获取器

    软件原理:本软件根据开源工具mimikatz2.0 修改!软件能直接读取系统明文密码! 支持32位.64位系统 win xp/vista/7/8/8.1 本机win10专业版测试不能获取,虚拟机win ...

  5. 14.2 multiprocessing--多线程

    本模块提供了多进程进行共同协同工作的功能.由于Python存在GIL锁,对于多线程来说,这只是部分代码可以使用多CPU的优势,对于想全部使用多CPU的性能,让每一个任务都充分地使用CPU,那么使用多进 ...

  6. JS高度融合入门笔记(一)

    复制下面的代码到编辑器里,让编辑器自动排版一下格式,效果会好一点,自我感觉我笔记的条理还是比较容易记忆的 <!DOCTYPE html><html><head> & ...

  7. JDBC与Statement和PreparedStatement的区别

    一.先来说说,什么是java中的Statement:Statement是java执行数据库操作的一个重要方法,用于在已经建立数据库连接的基础上,向数据库发送要执行的SQL语句.具体步骤: 1.首先导入 ...

  8. wamp环境下安装imagick扩展

    先上图,如下是安装成功后的phpinfo()界面: 安装步骤: 1.先确定安装版本,比如我的的php : php7.0.12  x86 ts 那么就需要三方版本 要一致:imagick软件本身( 如x ...

  9. HTML5+ MUI实现ajax的一个demo

    index.html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> &l ...

  10. java.lang.UnsupportedOperationException: seccomp unavailable: CONFIG_SECCOMP not compiled into kernel, CONFIG_SECCOMP and CONFIG_SECCOMP_FILTER are needed

    错误描述: ElasticSearch集群启动错误,错误的原因是:因为Centos6不支持SecComp,而ES默认bootstrap.system_call_filter为true进行检测,所以导致 ...