【codevs1002】搭桥(prim)
题目描述:

这是道题题意有点迷(或者是我语文不好),但其实实际上求的就是图中连通块的个数,然后在连通块与连通块之间连边建图跑最小生成树。但是……这个图可能是不连通的……求桥的数量和总长
于是我立刻想到了一种解法:分别在建好的图中的每一个连通块中跑最小生成树,如果当前连通块已经跑完了就跳转到下一个连通块。
关键代码:
for i:= to n do
d[i]:=a[,i];
d[]:=; sum:=; ans:=;//d[i]表示第i个点到生成树的距离,sum是桥的数量,ans是桥的总长度
repeat
k:=maxlongint; p:=;
for i:= to n do
if(d[i]<k)and(d[i]>)then begin
k:=d[i]; p:=i;
end;
if p= then begin\\跳转到下一个连通块
i:=;
while(d[i]=)and(i<=n)do inc(i);
if i>n then break
else begin
d[i]:=;
for j:= to n do
if(d[j]>)and(d[j]>a[i,j])then d[j]:=a[i,j];
continue;
end;
end;
ans:=ans+d[p]; inc(sum); d[p]:=;
for i:= to n do
if d[i]>a[p,i] then d[i]:=a[p,i];
until false;
writeln(sum,' ',ans);\\输出答案
然后我去看了看题解,发现了另外一种简单得多的方法:建假枝
在数据中,可能有多个建筑物,但是只要另外建一个点,将它与代表每个建筑物的点连起来(假枝),这样图就会变连通,在统计时,只要忽略假枝就能得出正确的解。
关键代码:
for i:= to sum do begin\\建假枝
a[i,sum+]:=<<;
a[sum+,i]:=<<;
end;
writeln(sum); n:=sum+;
for i:= to n do
d[i]:=a[,i];
d[]:=; sum:=; ans:=;
repeat
k:=maxlongint; p:=;
for i:= to n do
if(d[i]<k)and(d[i]>)then begin
k:=d[i]; p:=i;
end;
if p= then break;
if d[p]<<< then begin\\判断是否为假枝
ans:=ans+d[p]; inc(sum);
end;
d[p]:=;
for i:= to n do
if d[i]>a[p,i] then d[i]:=a[p,i];
until false;
writeln(sum,' ',ans);
【codevs1002】搭桥(prim)的更多相关文章
- 搭桥|codevs1002|最小生成树|Prim|并查集|Elena
1002 搭桥 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点 ...
- codevs1002搭桥(建图+Prim)
/* 先来个灌水法 然后建图跑最小生成树 注意观察题目中的规则 a[1][i]!=a[1][j]&&abs(a[2][i]-a[2][j])<=1 建图的时候可以每一个建筑物都看 ...
- codevs1002搭桥(prim)
题目描述: 这是道题题意有点迷(或者是我语文不好),但其实实际上求的就是图中连通块的个数,然后在连通块与连通块之间连边建图跑最小生成树.但是--这个图可能是不连通的--求桥的数量和总长 于是我立刻想到 ...
- codevs1002 搭桥
题目描述 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点相联系,则它们属于同一座建筑物.现在想在这些建筑物之间搭建一些桥梁,其中桥梁只能沿着矩形的方格的边沿搭建 ...
- 【并查集】【DFS】搭桥
[codevs1002]搭桥 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点相联系,则它们属于同一座建筑物.现在想在这些建筑物之间搭建一些桥梁,其中桥梁只能沿着 ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- Prim 最小生成树算法
Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法.和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm). P ...
随机推荐
- JEECMS 2.4.2 之添加新的可扩展的ftl模版文件、自定义方法
Demo: <@cms.CfgList isPage='1' league='0' recommend='0' lala='0' hot='1' memberId='0' pageNo=page ...
- 【BZOJ1058】[ZJOI2007]报表统计 STL
[BZOJ1058][ZJOI2007]报表统计 Description 小Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工作,作为她的生日礼物之一.经 ...
- 你意识到苹果公司已经抛弃了GC吗?
为什么移动Web应用程序很慢(译) - tangzhnju - 博客园 http://www.cnblogs.com/codemood/p/3213459.html
- crontab 问题分析 - CSDN博客 https://blog.csdn.net/tengdazhang770960436/article/details/50997297
cd /mnt/tools/trunk/plugins/personas; python update_keywords.py crontab 问题分析 crontab 问题分析 - CSDN博客 ...
- php自定义函数: 改进升级版curl
<?php function dcurl($url, $method = 'GET', $postFields = null, $header = null) { $ch = curl_init ...
- FW 配置一个私有的Docker仓库
思维 66 3月1日 发布 建分支 0 分支 收藏 0 收藏 我们在本地开发时,如果内网能部署一台Docker服务器,无疑会极大的方便镜像的分享发布,有些私有镜像就是可以直接放到内网服务器上,省去了不 ...
- C#通过反射打开相应窗体方法
C#单击菜单栏或工具栏时通过反射打开窗体的方法,可以以取代长长的if-else或switch-case语句.要点:将菜单或工具栏项的名称设置为与相应窗体名称相同(关键). private void M ...
- 【22,23节】Django的GET和POST属性笔记
COOKIES:一个标准的python字典对象,包含所有cookies,键和值都为字符串session:一个即能读又能写的类似字典对象,表示当前的会话,只有当django启用会话的支持时才可用 一键多 ...
- Axis 调用.net WebServic接口出现:验证消息的安全性时错误发生
解决方法:call.setSOAPVersion(org.apache.axis.soap.SOAPConstants.SOAP12_CONSTANTS); 參考:http://www.blogjav ...
- windows下redis的安装和启动
Rides: //cmd管理员进入 // 运行 : redis-cli.exe //报错 :Redis (error) NOAUTH Authentication required.解决方法 // ...