poj 3436 (最大流)
题意:每台电脑共有p种零件,现在有n台机器,给出n台机器每台需要的一些种类零件当原料(0代表不需要,1代表必须要,2代表可有可无)和输出的产品零件。问怎么安排生产线使生产出来零件可以组装的电脑最多。
思路:如果机器的原材料什么都不需要的话就可以当源点,如果机器输出的零件种类为p就可以当汇点。刚开始想复杂了(1 0 1 可以同时跟1 0 0和0 0 1相连),这题只有当一台机器的输出格式跟另一台的输入格式一样时才可以相连,不能有多余的零件产生。最后想想如果不是这样的话,2代表的可有可无就没意义了。当p=3时,输出1 0 1不能跟1 0 0相连但可以跟1 0 2相连。
#include<stdio.h>
#include<string.h>
const int N=100;
const int inf=0x3fffffff;
int gap[N],dis[N],head[N],num,start,end,ans,pp[N*N];
struct edge
{
int st,ed,flow,next;
}e[N*N],ee[N*N];
void addedge(int x,int y,int w)
{
ee[num].st=x;ee[num].ed=y;ee[num].flow=w;
e[num].st=x;e[num].ed=y;e[num].flow=w;e[num].next=head[x];head[x]=num++;
e[num].st=y;e[num].ed=x;e[num].flow=0;e[num].next=head[y];head[y]=num++;
}
struct node
{
int in[11],out[11],w;
}p[N];
int dfs(int u,int minflow)
{
if(u==end)return minflow;
int i,flow=0,f,v,min_dis=ans-1;
for(i=head[u];i!=-1;i=e[i].next)
{
if(e[i].flow<=0)continue;
v=e[i].ed;
if(dis[v]+1==dis[u])
{
f=dfs(v,e[i].flow>minflow-flow?minflow-flow:e[i].flow);
e[i].flow-=f;
e[i^1].flow+=f;
flow+=f;
if(flow==minflow)break;
if(dis[start]>=ans)return flow;
}
min_dis=min_dis>dis[v]?dis[v]:min_dis;
}
if(flow==0)
{
if(--gap[dis[u]]==0)
dis[start]=ans;
dis[u]=min_dis+1;
gap[dis[u]]++;
}
return flow;
}
int isap()
{
int maxflow=0;
memset(dis,0,sizeof(dis));
memset(gap,0,sizeof(gap));
gap[0]=ans;
while(dis[start]<ans)
maxflow+=dfs(start,inf);
return maxflow;
}
int main()
{
int i,n,m,j,flag,k,sum,maxflow;
while(scanf("%d%d",&m,&n)!=-1)
{
memset(head,-1,sizeof(head));
start=0,end=n+1;ans=end+1;num=0;
for(i=1;i<=n;i++)
{
flag=0;
scanf("%d",&p[i].w);
for(j=0;j<m;j++)
{
scanf("%d",&p[i].in[j]);
if(p[i].in[j]==1)
flag=1;
}
if(flag==0)//如果什么原料都不要就与超级源点相连
addedge(start,i,p[i].w);
flag=0;
for(j=0;j<m;j++)
{
scanf("%d",&p[i].out[j]);
if(p[i].out[j]==0)
flag=1;
}
if(flag==0)//如果能生产所有的零件跟汇点相连
addedge(i,end,p[i].w);
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(j==i)continue;
for(k=0;k<m;k++)
{
if(p[j].in[k]==2)continue;//可有可无的时候,不管p[i].out[k]为何值都可以
if(p[i].out[k]==p[j].in[k])continue;//i的输出要跟j的输入一样
break;
}
if(k==m)
addedge(i,j,p[i].w);
}
}
maxflow=isap();
sum=0;
for(i=0;i<num;i+=2)
{
if(e[i].st==start||e[i].ed==end)continue;
if(e[i].flow<ee[i].flow)//如果边的流量变小的,就有流量走过
pp[sum++]=i;
}
printf("%d %d\n",maxflow,sum);
for(j=0;j<sum;j++)
{
i=pp[j];
printf("%d %d %d\n",e[i].st,e[i].ed,ee[i].flow-e[i].flow);
}
}
return 0;
}
poj 3436 (最大流)的更多相关文章
- [poj 3436]最大流+输出结果每条边流量
题目链接:http://poj.org/problem?id=3436 大力套kuangbin板过了orz #include<cstdio> #include<cstring> ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- poj 3281 最大流+建图
很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...
- POJ - 3436 ACM Computer Factory 网络流
POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...
- A - ACM Computer Factory POJ - 3436 网络流
A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...
- POJ 3436:ACM Computer Factory(最大流记录路径)
http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...
- POJ 3436 ACM Computer Factory 最大流,拆点 难度:1
题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...
- POJ 3436 ACM Computer Factory(最大流+路径输出)
http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...
随机推荐
- qt model/view 架构基础介绍之QTreeWidget
# -*- coding: utf-8 -*- # python:2.x #说明:QTreeWidget用于展示树型结构,也就是层次结构同前面说的 QListWidget 类似,这个类需要同另外一个辅 ...
- MYSQL免安装版使用说明
1>把压缩文件mysql-noinstall-5.1.6-alpha-win32.zip解压到一个目录下,在环境变量中设置MYSQL_HOME,把%MYSQL_HOME%\bin 加入到 pat ...
- CSS的优先级
样式的优先级: (内联样式表[嵌入式样式])>(内部样式表)>(外部样式表) 经过测试动手测试发现有个(唯一的)例外 情况:当引用外部样式在内部样式表(非嵌入式样式)的后面时,外部样式会覆 ...
- ADO.NET程序访问数据的组件
组成--数据集(内存中的数据库) --DataSet数据集 --DataTable数据表 --DataColumn数据列 --DataRow数据行 --DataView数据视图--NET数据提供程序 ...
- Volley的三种基本用法StringRequest的Get和post用法以及JsonObjectRequest
首先做出整个应用的全局请求队列 package com.qg.lizhanqi.myvolleydemo; import android.app.Application; import com.and ...
- SQL Server两种分页的存储过程介绍
由于现在很多的企业招聘的笔试都会让来招聘的写一个分页的存储过程,有的企业甚至要求应聘者用两种方式实现分页,如果没有在实际项目中使用过分页,那么很多的应聘者都会出现一定的问题,下面介绍两种分 ...
- js-String
1.一个字符串可以使用单引号或双引号 2.查找 字符串使用 indexOf() 来定位字符串中某一个指定的字符首次出现的位置 如果没找到对应的字符函数返回-1 lastIndexOf() 方法在字符串 ...
- appStore应用发布流程
原文转自: http://blog.sina.com.cn/s/blog_68661bd801019uzd.html 首先确定帐号是否能发布, https://developer.appl ...
- JavaScript获取css 行间样式,内连样式和外链样式的方式
[行间样式获取] <div id='div1' style="backgroud:red">测试</div> <script> var odiv ...
- String.format Tutorial
String format(String format, Object... args) The format specifiers for general, character, and numer ...