Question

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

For example, given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.

Answer

用DP解答。

local[i][j] 表示0~i的数,最多j次交易,并且最后一次交易必须包含prices[j](即最后一天必须卖出),收益最大值。

global[i][j] 表示0~i的数,最多j次交易,收益最大值。

diff = prices[i] - prices[i-1] local[i][j] = max(global[i-1][j-1] + max(diff,0),local[i-1][j]+diff) global[i][j] = max(local[i][j], global[i-1][j])

local[i-1][j] + diff 表示第i-1天,买进prices[i-1],第i天卖出。

由于local[i-1][j]表示最后一次交易必须包含prices[i-1],即prices[i-1]必须卖出。所以可以把第i-1天的交易和第i天的交易合并,即成了最多j次交易,最后一天交易必须卖出prices[i]。 global[i-1][j-1] 表示前i-1天,最多j-1次交易。最后一天比较diff,如果diff>0,则第i-1天买进,第i天卖出;如果diff<0,则第i天买进,第i天卖出。

class Solution {
/**
* @param k: An integer
* @param prices: Given an integer array
* @return: Maximum profit
*/
public int maxProfit(int k, int[] prices) {
// write your code here
if (k == 0) {
return 0;
}
if (k >= prices.length / 2) {
int profit = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
int n = prices.length;
int[][] mustsell = new int[n + 1][n + 1]; // mustSell[i][j] 表示前i天,至多进行j次交易,第i天必须sell的最大获益
int[][] globalbest = new int[n + 1][n + 1]; // globalbest[i][j] 表示前i天,至多进行j次交易,第i天可以不sell的最大获益 mustsell[0][0] = globalbest[0][0] = 0;
for (int i = 1; i <= k; i++) {
mustsell[0][i] = globalbest[0][i] = 0;
} for (int i = 1; i < n; i++) {
int gainorlose = prices[i] - prices[i - 1];
mustsell[i][0] = 0;
for (int j = 1; j <= k; j++) {
mustsell[i][j] = Math.max(globalbest[(i - 1)][j - 1] + gainorlose,
mustsell[(i - 1)][j] + gainorlose);
globalbest[i][j] = Math.max(globalbest[(i - 1)][j], mustsell[i ][j]);
}
}
return globalbest[(n - 1)][k];
}
};

Best Time to Buy and Sell Stock IV 解答的更多相关文章

  1. leetcode 第188题,我的解法,Best Time to Buy and Sell Stock IV

    <span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...

  2. 【LeetCode】Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the ith element is the price of a ...

  3. Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV)

    Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV) 股票问题: 121. 买卖股票的最佳时机 122. ...

  4. 【刷题-LeetCode】188 Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the i-th element is the price of ...

  5. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. LeetCode Best Time to Buy and Sell Stock IV

    原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/ 题目: Say you have an array ...

  8. Lintcode393 Best Time to Buy and Sell Stock IV solution 题解

    [题目描述] Say you have an array for which the i th element is the price of a given stock on day i. Desi ...

  9. [LeetCode][Java] Best Time to Buy and Sell Stock IV

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

随机推荐

  1. Qt Style Sheets Reference

    Qt Style Sheets support various properties, pseudo-states, and subcontrols that make it possible to ...

  2. git pull 代码很慢的问题

    办公环境调整,之前开发机是和自己的电脑放同一网段内的,现在开发机放至到本地其他网段内,造成pull 代码很慢的问题,在网上查了一下 以下是原文,链接为 http://blog.sina.com.cn/ ...

  3. GetJsonByDataTable

    public string getJsonByModel(DataTable dt) { StringBuilder nsb = new StringBuilder(); ; i < dt.Ro ...

  4. java虚拟机涉及内存溢出

    Java语言写的代码是.java文件,它会被特定程序编译(javac.exe,它会被Eclipse之类的IDE调用)成字节码(bytecode),字节码不能直接在CPU上运行,需要另一个程序读取并执行 ...

  5. 托盘图标、气泡以及任务栏崩溃后的自动添加——Shell_NotifyIcon

    托盘图标使用函数 Shell_NotifyIcon 创建.修改和删除,参数主要使用 NOTIFYICONDATA 结构. 任务栏启动时会给所有顶层窗口发送 TaskbarCreated 消息,由于不同 ...

  6. Ignatius and the Princess I

    算法:搜索+优先队列+(递归输出结果) The Princess has been abducted by the BEelzebub feng5166, our hero Ignatius has ...

  7. 编辑一个类库项目 即*.csproj这个文件的正确方式

    以前总是用记事本打开,删除一些或增加一些已修改的文件 今天才知道,正确的方式为: 右键单击类库,选择“卸载项目”,然后再右键单击已卸载变为灰色的类库,选择“编辑*.csproj” 编辑完了重新加载一下 ...

  8. CentOS下几种软件安装方式

    1.rpmRPM RedHat Package Manager(RedHat软件包管理工具)的缩写,这一文件格式名称虽然打上了RedHat的标志, 但是其原始设计理念是开放式的,现在包括OpenLin ...

  9. Spring4.0学习笔记(3) —— Spring_Bean之间的关系

    1.继承关系 bean-relation.xml <?xml version="1.0" encoding="UTF-8"?> <beans ...

  10. Box model小心得

    最近在研究css~当设置一个元素width后~有时候也会对他设定padding,margin,border值, 每次这样我就心里琢磨,那这个元素的width会变吗,js获取元素的宽度width()指的 ...