145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.

Find the sum of all numbers which are equal to the sum of the factorial of their digits.

Note: as 1! = 1 and 2! = 2 are not sums they are not included.

题目大意:

145 是一个奇怪的数字, 因为 1! + 4! + 5! = 1 + 24 + 120 = 145.

找出所有等于各位数字阶乘之和的数字之和。

注意: 因为 1! = 1 和 2! = 2 不是和的形式,所以它们不算在内。

//(Problem 34)Digit factorials
// Completed on Thu, 25 Jul 2013, 16:11
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/#include<stdio.h>
#include<math.h>
#include<stdbool.h> int factorial(int n) //阶乘函数
{
if(n== || n==) return ;
else return n*factorial(n-);
} bool judge(int n) //判断一个整数是否符合题意的函数
{
char s[];
sprintf(s,"%d",n);
int len=strlen(s);
int sum=;
for(int i=; i<len; i++)
{
sum+=factorial(s[i]-'');
}
if(n==sum) return true;
else return false;
} int main()
{
int sum=;
for(int i=; i<; i++)
{
if(judge(i))
sum+=i;
}
printf("%d\n",sum);
return ;
}
Answer:
40730

(Problem 34)Digit factorials的更多相关文章

  1. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 16)Power digit sum

    215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

  7. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  8. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. poj 3269 Building A New Barn

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  2. Java 根据comboBox选择结果显示JTable

    处理这样的问题的主要思路是:     对于JTable,JTree等Swing控件,都有一个对应的Model用来存储数据,JTable对应的有一个DefaultTableModel.     Defa ...

  3. 1396 - Most Distant Point from the Sea

    点击打开链接 题意: 按顺序给出一小岛(多边形)的点 求岛上某点离海最远的距离 解法: 不断的收缩多边形(求半平面交) 直到无限小 二分收缩的距离即可 如图 //大白p263 #include < ...

  4. [置顶] Ajax 初步学习总结

    Ajax是什么 Ajax是(Asynchronous JavaScript And XML)是异步的JavaScript和xml.也就是异步请求更新技术.Ajax是一种对现有技术的一种新的应用,不是一 ...

  5. POJ3771+Prim

    最小生成树的应用 数据量小. /* Prim */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  6. MyEclipse中jsp的凝视报错解决

    jsp页面中凝视报错: 出错现场:在eclipse中没有报错.在MyEclipse中报错. <!-- To use express install, set to playerProductIn ...

  7. handlebar.js使用

    官方网站:http://handlebarsjs.com/ 下载及查看使用帮助,或者用百度cdn引用 一.定义模板 <script id="entry-template" t ...

  8. 建造者模式->代码示例

    <?php interface Builder{ public function head(); public function body(); public function foot(); ...

  9. Windows下安装Apache2.4+PHP5.4+Mysql5.7

    注:文中所写的安装过程均在Win7 x86下通过测试,提供的百度云下载链接均为32位安装包,如需Apache和PHP的64位安装包请从官网下载! 一.安装Apache2.4.12 Apache官方下载 ...

  10. C和指针 读书笔记

    准备复习一下之前读过的<C和指针>,主要看之前标记过的地方. 感觉像第一次看的地方再记录一下-- 1.预处理器读入源代码,根据预处理指令对其进行修改,然后将修改后的源代码交给编译器. 2. ...