145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.

Find the sum of all numbers which are equal to the sum of the factorial of their digits.

Note: as 1! = 1 and 2! = 2 are not sums they are not included.

题目大意:

145 是一个奇怪的数字, 因为 1! + 4! + 5! = 1 + 24 + 120 = 145.

找出所有等于各位数字阶乘之和的数字之和。

注意: 因为 1! = 1 和 2! = 2 不是和的形式,所以它们不算在内。

//(Problem 34)Digit factorials
// Completed on Thu, 25 Jul 2013, 16:11
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/#include<stdio.h>
#include<math.h>
#include<stdbool.h> int factorial(int n) //阶乘函数
{
if(n== || n==) return ;
else return n*factorial(n-);
} bool judge(int n) //判断一个整数是否符合题意的函数
{
char s[];
sprintf(s,"%d",n);
int len=strlen(s);
int sum=;
for(int i=; i<len; i++)
{
sum+=factorial(s[i]-'');
}
if(n==sum) return true;
else return false;
} int main()
{
int sum=;
for(int i=; i<; i++)
{
if(judge(i))
sum+=i;
}
printf("%d\n",sum);
return ;
}
Answer:
40730

(Problem 34)Digit factorials的更多相关文章

  1. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 16)Power digit sum

    215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

  7. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  8. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. linux下解压iso文件

    .iso文件的格式是iso9660,iso9660是cd上的一种文件系统, 也就是说是 是数据在cd上的组织形式: 它的一些限制是: 1.最多8级子目录(可以用RockRidge Extension增 ...

  2. Static block start new thread

    Static block start new thread public class StaticThreadInit { static{ Threadt = newThread(){ public ...

  3. 如何使用ssh-keygen生成key

    ssh-keygen - 生成.管理和转换认证密钥 通常使用:[b]ssh-keygen -i -f 公密匙名>> authorized_keys[/b] 语法详细介绍 [code]ssh ...

  4. SSDP协议的Android实现以及使用

    前面一篇博客里面已经介绍过SSDP协议原理,本篇博客将实现实现Android上的SSDP协议. 关键技术分析:1.发送广播:须要发送送广播,所以须要使用MulticastSocket.SocketAd ...

  5. ReportViewer动态加载数据源

    ReportViewer主要用于打印和导出数据到pdf或excel,接下来将简单做一张Northwind的Products表的统计报表. (最终图) 一.新建一张报表 二.添加数据集 添加xsd文件后 ...

  6. FMDB 直接将查询结果转化为字典

    今天学习FMDB框架,发现非常好用的一点,就是就以把查询结果直接转化为字典 NSString *querySql = @"select * from stuInfo"; NSMut ...

  7. [SAP] 外部系统调用SAP web service用户验证的简单方法

    场景: 一个Java系统调用SAP系统提供的web service,除了根据WSDL生成的代理类,调用相应方法,传入相应参数外,还等需要使用SAP提供的用户信息进行身份验证,最简单的方法是在soap请 ...

  8. hadoop默认3个核心配置文件说明

    1       获取默认配置 配置hadoop,主要是配置core-site.xml,hdfs-site.xml,mapred-site.xml三个配置文件,默认下来,这些配置文件都是空的,所以很难知 ...

  9. UITextView 限制输入字数

    尊重原创  http://blog.csdn.net/fengsh998/article/details/45421107 对于限制UITextView输入的字符数.相信大家在网上见得最多的是实现UI ...

  10. 用CSS样式画横线和竖线的方法

    今天在做网页的时候,需要用到CSS画横线,虽然比较简单,但也出了一些小问题,拿来做个备忘. 方法一:用DIV,代码如下:(推荐此方法)     <div style="width:80 ...