Question

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Solution 1 -- Traverse Array

Use merge procedure of merge sort here. Keep track of count while comparing elements of two arrays. Note to consider odd / even situation.

Time complexity O(n), space cost O(1).

 public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int length1 = nums1.length, length2 = nums2.length, total = length1 + length2;
int index1 = total / 2, index2;
// Consider two situations: (n + m) is odd, (n + m) is even
if (total % 2 == 0)
index2 = total / 2 - 1;
else
index2 = total / 2;
// Traverse once to get median
int p1 = 0, p2 = 0, p = -1, tmp, median1 = 0, median2 = 0;
while (p1 < length1 && p2 < length2) {
if (nums1[p1] < nums2[p2]) {
tmp = nums1[p1];
p1++;
} else {
tmp = nums2[p2];
p2++;
}
p++;
if (p == index1)
median1 = tmp;
if (p == index2)
median2 = tmp;
}
if (p < index1 || p < index2) {
while (p1 < length1) {
tmp = nums1[p1];
p1++;
p++;
if (p == index1)
median1 = tmp;
if (p == index2)
median2 = tmp;
}
while (p2 < length2) {
tmp = nums2[p2];
p2++;
p++;
if (p == index1)
median1 = tmp;
if (p == index2)
median2 = tmp;
}
}
return ((double)median1 + (double)median2) / 2;
}
}

Solution 2 -- Binary Search

General way to find Kth element in two sorted arrays. Time complexity O(log(n + m)).

 public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
if ((m + n) %2 == 1)
return findKthElement(nums1, nums2, (m + n) / 2, 0, m - 1, 0, n - 1);
else
return (findKthElement(nums1, nums2, (m + n) / 2, 0, m - 1, 0, n - 1) * 0.5 +
findKthElement(nums1, nums2, (m + n) / 2 - 1, 0, m - 1, 0, n - 1) * 0.5);
} private double findKthElement(int[] A, int[] B, int k, int startA, int endA, int startB, int endB) {
int l1 = endA - startA + 1;
int l2 = endB - startB + 1;
if (l1 == 0)
return B[k + startB];
if (l2 == 0)
return A[k + startA];
if (k == 0)
return A[startA] > B[startB] ? B[startB] : A[startA];
int midA = k * l1 / (l1 + l2);
// Note here
int midB = k - midA - 1;
midA = midA + startA;
midB = midB + startB;
if (A[midA] < B[midB]) {
k = k - (midA - startA + 1);
endB = midB;
startA = midA + 1;
return findKthElement(A, B, k, startA, endA, startB, endB);
} else if (A[midA] > B[midB]) {
k = k - (midB - startB + 1);
endA = midA;
startB = midB + 1;
return findKthElement(A, B, k, startA, endA, startB, endB);
} else {
return A[midA];
}
}
}

Median of Two Sorted Arrays 解答的更多相关文章

  1. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

  2. [LintCode] Median of Two Sorted Arrays 两个有序数组的中位数

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted ...

  3. 2.Median of Two Sorted Arrays (两个排序数组的中位数)

    要求:Median of Two Sorted Arrays (求两个排序数组的中位数) 分析:1. 两个数组含有的数字总数为偶数或奇数两种情况.2. 有数组可能为空. 解决方法: 1.排序法 时间复 ...

  4. 【转载】两个排序数组的中位数 / 第K大元素(Median of Two Sorted Arrays)

    转自 http://blog.csdn.net/zxzxy1988/article/details/8587244 给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素.另外一种更加具 ...

  5. LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

    题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...

  6. No.004 Median of Two Sorted Arrays

    4. Median of Two Sorted Arrays Total Accepted: 104147 Total Submissions: 539044 Difficulty: Hard The ...

  7. leetcode第四题:Median of Two Sorted Arrays (java)

    Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. Find t ...

  8. LeetCode(3) || Median of Two Sorted Arrays

    LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...

  9. Kotlin实现LeetCode算法题之Median of Two Sorted Arrays

    题目Median of Two Sorted Arrays(难度Hard) 方案1,数组合并&排序调用Java方法 import java.util.* class Solution { fu ...

随机推荐

  1. 福建省队集训被虐记——DAY2

    唉--第二天依然被虐--但是比第一天好一点--我必须负责任的指出:志灿大神出的题比柯黑的不知道靠谱到哪里去了--柯黑出的简直不可做 但是被虐的命运是无法改变的--求各位神犇别D我 黄巨大真是强啊,不愧 ...

  2. HDU 1251 字典树(前缀树)

    题目大意 :Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己的前缀).(单词互不相同) ...

  3. Uva227.Puzzle

    题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. [置顶] Objective-C ,ios,iphone开发基础:自定义控件:Eg: UIButton

    第一步:新建一个工程,在 .h文件中坐如下声明: #import <UIKit/UIKit.h> @interface MyButtonViewController : UIViewCon ...

  5. JUnit单元测试框架的使用

    http://blog.csdn.net/mao520741111/article/details/51462215 原文地址 http://www.open-open.com/lib/view/op ...

  6. spring MVC上传文件演示

    //相比smartUpload功能上感觉确实有点心有意力不足的感觉,就安全性判断后缀,smartUpload就非常方便. public ModelAndView addFileUp(HttpServl ...

  7. pyqt 图片(label上显示

    # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' from decimal import * from PyQt4.Q ...

  8. 关于scrollTop

    如下图

  9. Lambda表达式的面纱(一)

    在.NET3.0版本中微软推出了Lambda表达式.这使代码的表述可以更加优雅.但是对于新事物大多会本能的排斥,虽然3.0版本已经推出了好久了,但是我向周围的人了解了一下,用Lambda的人不是很多, ...

  10. Centos6架设GIT服务,windows客户端使用TortoiseGit加载KEYGEN连接GIT服务器

    前几天得空,想起前一阵学了GIT还没好好实践,就在虚拟机中安装测试了一下,并简单记录了CENTOS6中GIT安装,ssh-keygen生成,客户端使用TortoiseGit加载KEYGEN连接GIT服 ...