Description###

给出n个数qi,给出Fj的定义如下:

\[F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i>j} \frac{q_iq_j}{(i-1)^2}
\]

令Ei=Fi/qi,求Ei.

Input###

第一行一个整数n。

接下来n行每行输入一个数,第i行表示qi。

n≤100000,0<qi<1000000000

Output###

n行,第i行输出Ei。与标准答案误差不超过1e-2即可。

Sample Input###

5

4006373.885184

15375036.435759

1717456.469144

8514941.004912

1410681.345880

Sample Output###

-16838672.693

3439.793

7509018.566

4595686.886

10903040.872


想法##

对FFT及卷积等还不是很熟,所以这道题还是参考的题解。

首先,原式化简得:

\[E_j=\sum\limits_{i<j} \frac{q_i}{(i-1)^2} - \sum\limits_{i>j} \frac{q_i}{(i-j)^2}
\]

设 \(g_i= \frac{1}{i^2}\) ,则

\[E_j=\sum\limits_{i<j} q_ig_{j-i} - \sum\limits_{i>j} q_i g_{j-i}
\]

我们发现前面的求和式子就是一个卷积形式,可用fft

而后面的求和式子,若将下标i反过来,就也是一个标准的卷积形式,可用fft

之后就出来啦。


代码##

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> using namespace std; const int N = 300005;
const double pi = 3.1415926535897932384626433832795; struct c{
double r,i;
c() { r=i=0.0; }
c(double x,double y) { r=x; i=y; }
c operator + (const c &b) { return c(r+b.r,i+b.i); }
c operator += (const c &b) { return *this=*this+b; }
c operator - (const c &b) { return c(r-b.r,i-b.i); }
c operator -= (const c &b) { return *this=*this-b; }
c operator * (const c &b) { return c(r*b.r-i*b.i,r*b.i+b.r*i); }
c operator *= (const c &b) { return *this=*this*b; }
}a1[N],a2[N],b[N],x[N]; int l;
int r[N];
void fft(c A[],int ty){
for(int i=0;i<l;i++) x[r[i]]=A[i];
for(int i=0;i<l;i++) A[i]=x[i];
for(int i=2;i<=l;i<<=1){ /**/
c wn(cos(pi*2/i),ty*sin(pi*2/i));
for(int j=0;j<l;j+=i){
c w(1,0);
for(int k=j;k<j+i/2;k++){
c t=w*A[k+i/2];
A[k+i/2]=A[k]-t;
A[k]+=t;
w*=wn;
}
}
}
}
int n; int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++) {
scanf("%lf",&a1[i].r);
a2[n-i-1].r=a1[i].r;
}
for(int i=1;i<n;i++) b[i].r=1.0/((double)i*i); l=1;
while(l<n*2) l<<=1;
for(int i=0;i<l;i++) r[i]=(r[i>>1]>>1)|((i&1)*(l>>1)); fft(a1,1); fft(a2,1); fft(b,1);
for(int i=0;i<l;i++) {
a1[i]*=b[i];
a2[i]*=b[i];
}
fft(a1,-1); fft(a2,-1); for(int i=0;i<n;i++)
printf("%.3lf\n",a1[i].r/l-a2[n-i-1].r/l); return 0;
}

[bzoj3527] [洛谷P3338] [Zjoi2014]力的更多相关文章

  1. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  2. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  3. 洛谷P3338 [ZJOI2014]力(FFT)

    传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...

  4. 洛谷 P3338 [ZJOI2014]力

    题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...

  5. 洛咕 P3338 [ZJOI2014]力

    好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...

  6. 【洛谷P3338】力

    题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...

  7. [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)

    题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...

  8. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  9. 【洛谷 P3338】 [ZJOI2014]力(FFT)

    题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]= ...

随机推荐

  1. 设计模式3——单例模式Singleton

    参考链接: 单例模式-菜鸟教程:https://www.runoob.com/design-pattern/singleton-pattern.html 这种类型的设计模式属于创建型模式,它提供了一种 ...

  2. react-native-vector-icons 安装、使用

    react-native-vector-icons 安装.使用 前言 任何库的安装与使用都离不开官文,按照官方文档一步步操作可以规避大多数问题.不过很多库只有英文文档,想要完全参透需要时间.react ...

  3. spring boot(三)Junit 测试controller

    Junit测试Controller(MockMVC使用),传输@RequestBody数据解决办法 一.单元测试的目的 简单来说就是在我们增加或者改动一些代码以后对所有逻辑的一个检测,尤其是在我们后期 ...

  4. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  5. java序列化(二)

    上一篇我们简单的了解了java的序列化方法.可以想一下,如果有两个类,如果父类实现了序列化,子类没有实现序列化,子类在进行对象序列化读写时,父类和子类均被实现序列化.如果其中父类没有实现序列化,子类实 ...

  6. Spark学习笔记(三)—— Standalone模式

    上篇笔记记录了Local模式的一些内容,但是实际的应用中很少有使用Local模式的,只是为了我们方便学习和测试.真实的生产环境中,Standalone模式更加合适一点. 1.基础概述 Standalo ...

  7. 二次排序LincodeNo.846

    846.Multi-keyword Sort 题目要求在已经排序好的序列上进行二次排序 那么改变一下比较方法即可 bool cmp(vector<int> a,vector<int& ...

  8. kubespy 用bash实现的k8s动态调试工具

    原文位于 https://github.com/huazhihao/kubespy/blob/master/implement-a-k8s-debug-plugin-in-bash.md 背景 Kub ...

  9. Math&Random&ThreadLocalRandom类

    Math类 //绝对值值运算: Math.abs(18.999); //返回19.999这个数的绝对值 Math.abs(-12.58); // 返回-12.58这个数的绝对值,为12.58 //取值 ...

  10. pdf文件内容查看器 -- 采用wpf开发

    前言 pdf是一种应用非常广的版式文档格式,已成为事实上的国际标准.关于pdf格式的文章汗牛充栋,本文也是关于pdf格式的文章,但是本文不是纸上谈兵:本人这几周一直研究pdf格式内容,不但对pfd格式 ...