左倾堆,用于堆的快速合并。

规则:

    ① 节点的键值小于或等于它的左右子节点的键值。

    ② 节点的左孩子的NPL >= 右孩子的NPL。

    ③ 节点的NPL = 它的右孩子的NPL + 1。

测试文件 main.cpp:

#include <iostream>
#include "LeftistHeap.h"

using std::cout;
using std::endl;

int main()
{
    LeftistHeap<int> lh(LeftistHeap<int>::HeapType::MINIMEM);

    auto il = { ,,,,,,,,, };
    for (auto& x : il) lh.push(x);
    cout << "Element:\n\t";
    lh.levelTraversal();
    cout << endl << endl;
    cout << "Pop: " << lh.top() << endl << endl;
    lh.pop();
    cout << "Element:\n\t";
    lh.levelTraversal();
    cout << endl;

    ;
}

头文件 "LeftistHeap.h":

#pragma once
#ifndef __LEFTISTHEAP_H__
#define __LEFTISTHEAP_H__

#include "BinaryTreeOperations.h"
template<typename _Ty>
class LeftistHeap
{
    struct Node
    {
        _Ty key;
        ;
        Node* left = nullptr;
        Node* right = nullptr;
        Node(const _Ty& _key) :key(_key) {}
    };

public:
    , MAXIMEM };

public:
    LeftistHeap() = default;
    LeftistHeap(HeapType _heapType) { heapType = _heapType; }
    ~LeftistHeap() { BTO::clear(root); size_n = ; }
    ; }

    void preorderTraversal() { BTO::preorderTraversal(root, drawData); }
    void inorderTraversal() { BTO::inorderTraversal(root, drawData); }
    void postorderTraversal() { BTO::postorderTraversal(root, drawData); }
    void iterativePreorderTraversal() { BTO::iterativePreorderTraversal(root, drawData); }
    void iterativeInorderTraversal() { BTO::iterativeInorderTraversal(root, drawData); }
    void iterativePostorderTraversal() { BTO::iterativePostorderTraversal(root, drawData); }
    void levelTraversal() { BTO::levelTraversal(root, drawData); }
    size_t size() const { return size_n; }

    void pop();
    _Ty& top() const;
    void push(const _Ty&);
    void merge(LeftistHeap<_Ty>&);

private:
    static void drawData(const Node* _node) { std::cout << _node->key << " "; }
    bool compare(const _Ty& _a, const _Ty& _b)
    {
        return (heapType == HeapType::MAXIMEM) ? (_a > _b) : (_a < _b);
    }
    Node* merge(Node*&, Node*&);

private:
    Node* root = nullptr;
    size_t size_n = ;
    HeapType heapType = HeapType::MAXIMEM;
};

template<typename _Ty>
void LeftistHeap<_Ty>::pop()
{
    if (root == nullptr) throw std::exception("LeftistHeap is empty!");
    Node* leftT = root->left;
    Node* rightT = root->right;
    delete root;
    root = merge(leftT, rightT);
    --size_n;
}

template<typename _Ty>
_Ty& LeftistHeap<_Ty>::top() const
{
    if (root == nullptr) throw std::exception("LeftistHeap is empty!");
    return root->key;
}

template<typename _Ty>
void LeftistHeap<_Ty>::push(const _Ty& _key)
{
    Node* temp = new Node(_key);
    root = merge(root, temp);
    temp = nullptr;
    ++size_n;
}

template<typename _Ty>
void LeftistHeap<_Ty>::merge(LeftistHeap<_Ty>& _lh)
{
    if (heapType != _lh.heapType) throw std::exception("Bad heapType");
    root = merge(root, _lh.root);
    _lh.root = nullptr;
    size_n += _lh.size_n;
    _lh.size_n = ;
}

template<typename _Ty>
typename LeftistHeap<_Ty>::Node* LeftistHeap<_Ty>::merge(Node*& _n1, Node*& _n2)
{
    if (_n1 == nullptr && _n2 == nullptr) return nullptr;
    else if (_n1 == nullptr) return _n2;
    else if (_n2 == nullptr) return _n1;

    if (!compare(_n1->key, _n2->key)) std::swap(_n1, _n2);
    _n1->right = merge(_n1->right, _n2);

    if (_n1->left == nullptr || _n1->left->NPL < _n1->right->NPL) std::swap(_n1->left, _n1->right);
    ;
    ;

    return _n1;
}

#endif // !__LEFTISTHEAP_H__

二叉堆(2)LeftistHeap的更多相关文章

  1. AC日记——二叉堆练习3 codevs 3110

    3110 二叉堆练习3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 给定N(N≤500,000)和N个整 ...

  2. codevs 3110 二叉堆练习3

    3110 二叉堆练习3 http://codevs.cn/problem/3110/ 题目描述 Description 给定N(N≤500,000)和N个整数(较有序),将其排序后输出. 输入描述 I ...

  3. 数据结构图文解析之:二叉堆详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  4. POJ 2010 - Moo University - Financial Aid 初探数据结构 二叉堆

    考虑到数据结构短板严重,从计算几何换换口味= = 二叉堆 简介 堆总保持每个节点小于(大于)父亲节点.这样的堆被称作大根堆(小根堆). 顾名思义,大根堆的数根是堆内的最大元素. 堆的意义在于能快速O( ...

  5. 二叉堆(一)之 图文解析 和 C语言的实现

    概要 本章介绍二叉堆,二叉堆就是通常我们所说的数据结构中"堆"中的一种.和以往一样,本文会先对二叉堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本 ...

  6. 二叉堆(二)之 C++的实现

    概要 上一章介绍了堆和二叉堆的基本概念,并通过C语言实现了二叉堆.本章是二叉堆的C++实现. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的C++实现(完整源码)4. 二叉堆的C++测试程 ...

  7. 二叉堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了二叉堆,本章给出二叉堆的Java版本.还是那句话,它们的原理一样,择其一了解即可. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的Java实现(完整源码) ...

  8. 二叉堆(binary heap)

    堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因 ...

  9. 在A*寻路中使用二叉堆

    接上篇:A*寻路初探 GameDev.net 在A*寻路中使用二叉堆 作者:Patrick Lester(2003年4月11日更新) 译者:Panic 2005年3月28日 译者序 这一篇文章,是&q ...

  10. 《Algorithms算法》笔记:优先队列(2)——二叉堆

    二叉堆 1 二叉堆的定义 堆是一个完全二叉树结构(除了最底下一层,其他层全是完全平衡的),如果每个结点都大于它的两个孩子,那么这个堆是有序的. 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组 ...

随机推荐

  1. nginx官网版本说明

    nginx软件下载:http://nginx.org/en/download.html Mainline version:Nginx 正在主力开发的版本Stable version:最新稳定版,生产环 ...

  2. MyBatis 与Ibatis 区别

    Ibatis 是 Mybatis 的前身,两者都是优秀的持久层框架. 区别: 1.mybatis 实现接口绑定,不需要具体接口实现类.但是需要在xml文件中 的 namespace 绑定具体的接口. ...

  3. jsplumb 常用事件

    1. jsPlumb.getAllConnections() 获取所有连接线2. jsPlumb.deleteEveryConnection(); 清空所有连接线3. jsPlumb.deleteCo ...

  4. href的几个特殊值

    a href ="" :默认打开的还是当前页面,会刷新一下重新打开. a href ="#": 浏览器地址栏网址后面会多显示1个#.不会刷新页面,会回到页面顶部 ...

  5. 从零开始学习MySQL全文索引

    目录 一.为什么要用全文索引 二.什么是全文索引 三.如何创建全文索引 四.创建测试数据 五.查询-使用自然语言模式 六.查询-使用布尔模式(强大的语法) 语法 示例 七.查询-使用扩展模式 八.注意 ...

  6. 解决掉你心中 js function与Function的关系的疑问

    前言 在网上有很多关于js function 与 Function直接关系的文章. 但是我感觉过于抽象化了,那么如何是具体化的解释? 正文部分为个人理解部分,如有不对望指出. 正文 <scrip ...

  7. SpringBoot安全管理--(三)整合shiro

    简介: Apache Shiro 是一一个开源的轻量级的Java安全框架,它提供身份验证.授权.密码管理以及会话管理等功能. 相对于Spring Security, Shiro框架更加直观.易用,同时 ...

  8. PMP-番外篇-PMP工具与技术目录

    ########################################################### 这里先总结所有工具和技术,让大家有一个整体的概念. 也可以当作一个工具和技术查询 ...

  9. 如何获取Session对象中的对象

    先调用request的getSession()方法获取一个HttpSession的对象,然后将这个对象进行强制类型转换成原本封装的对象,这样就能获取Session对象中的对象了 1.调用request ...

  10. NB-Iot和GPRS信号通信模式的对比

    NB-Iot和GPRS信号通信模式的对比